首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到16条相似文献,搜索用时 408 毫秒
1.
小湾高拱坝上游坝踵人工短缝设置效果的深入分析   总被引:1,自引:0,他引:1  
在已有研究成果的基础上,对小湾高拱坝坝踵附近人工短缝的设置效果进行全面、深入分析。采用无厚度的接触单元模拟人工短缝的工作性态,坝体混凝土本构模型采用单轴等效拉伸软化模型,分别采用整体模型和子模型对不同人工短缝设置高程、不同的缝内水压力进行了比较分析。从运行期的整体仿真计算结果来看,小湾拱坝设上游人工短缝后,坝踵应力可以得到较大的改善,且对坝体的整体性影响较小。为了更加合理地评价高拱坝人工短缝设置的效果,建议同时考虑施工期和运行期的荷载进行综合分析计算,为小湾拱坝人工短缝的设计提供科学依据。  相似文献   

2.
温控防裂与横缝工作性态调控是混凝土拱坝施工期面临的两大难题,而冷却通水策略是控制拱坝混凝土安全、横缝开合的关键因素。为此,本文提出了混凝土拱坝温度应力与横缝性态智能控制方法,并综合应用智能化控制理念、仿真分析工具、自动控制技术构建了混凝土拱坝温度应力与横缝性态智能控制系统。分析表明,该系统有效调控了坝体应力与横缝工作性态、充分发挥了混凝土材料性能、大幅提升了温控施工效率,实现了拱坝温控防裂与横缝性态调控的多目标智能优化。  相似文献   

3.
溪柄碾压混凝土薄拱坝的研究   总被引:17,自引:1,他引:17  
溪柄碾压混凝土薄拱坝根据施工期至运行期的温度场和累计组合应力场的仿真计算进行结构设计,用混凝土多轴强度及实验韧性判别,对施工期和运行期用不同安全系数,采用低绝热温升(12℃)混凝土,拱坝中设人工短缝以改进整体式碾压混凝土结构的应力和传力方向,63.5m高的拱坝仅用半年即完成整体碾压工作并勿需等待冷却和灌浆即可蓄水,提前发挥工程效益。  相似文献   

4.
在目前的规范中,混凝土重力坝地震分析时是不须要考虑温度荷载的,但对于丹江口大坝加高工程,众多的研究及现场的监测数据表明,丹江口大坝新老混凝土结合面开裂主要是由于温度应力引起的。为更为详实地反映大坝的实际情况,在考虑温度荷载和新老混凝土结合面开裂状态的基础上,对丹江口大坝进行了非线性地震反应分析。  相似文献   

5.
本文简要介绍拉格朗日不连续变形分析(LDDA)和以黏弹性边界为吸能边界的地震输入方法。用LDDA模拟拱坝横缝、诱导缝和施工期温度裂缝,对西南地区某300米级高拱坝进行有限元网格剖分,研究对比有、无施工期温度缝情况下坝体的静动位移和应力,温度缝的张开和滑移以及缝端的应力。得出以下结论:施工期温度缝可明显增加静位移,但动位移相差不大,作为衡量裂缝扩展的缝端应力未超过混凝土的抗拉强度。  相似文献   

6.
为解决传统的大坝混凝土早龄期热裂性能评价方法的不足,综合考虑混凝土的温度历程、约束、变形和应力的发展,采用温度–应力试验技术,从整体论出发研究粉煤灰掺量分别为35%(基准)和80%(超高掺)两种非碾压型常态大坝混凝土的早龄期抗裂性能。结果表明:超高掺混凝土水化温升低,比基准混凝土的开裂温度低、开裂温降大,水化硬化过程中热膨胀系数较小,而受拉徐变度较大,早龄期抗开裂能力强。超高掺混凝土是具有发展前景的绿色高性能大坝混凝土。  相似文献   

7.
采用钢筋应力计、无应力计、应变计、温度计、裂缝计等监测仪器对三板溪混凝土面板堆石坝进行监测,研究三板溪混凝土面板堆石坝在施工期和运行期的应力、变形分布规律,分析混凝土面板产生结构性裂缝的可能原因。监测资料分析结果表明:导致面板水平施工缝挤压破损的直接原因是面板水平缝缝面压应力过大和结构上的缺陷;从外部运行环境看,首次蓄水水位上升过快引起大坝变形速率过大,面板偏心受压,最终导致面板水平缝挤压破损。  相似文献   

8.
本文以三峡水电站下游坝面浅槽式钢衬钢筋混凝土压力管道为研究对象,通过混凝土施工仿真计算的方法,重点研究了管道与坝体的相互作用。管道施工期温度场与应力场、管道在充水受荷前的初始温度与应力状态以及管道施工方案的优化等四个问题。结果表明,后浇筑管道与大坝接缝面会出现较大的拉应力,同时会使大坝迎水面竖向压力不断减小;管道在施工期将出现环向及轴向拉应力,尤以斜直段表现最为明显;管道在充水受荷前存在不可忽视的初始状态,不同部位的初始温度与应力状态不同,在设计时应分别参考使用,根据温度场与应力场的计算结果,提出了一种较优的施工计划,以使管道在施工期以及受荷前处于较佳的初始状态。  相似文献   

9.
温度荷载是混凝土坝应考虑的主要荷载之一,而坝体会因温度应力过大从而导致产生温度裂缝,对大坝的安全运行产生不利影响。为避免在施工和运行过程中因温度应力超过坝体混凝土的容许应力而产生温度裂缝,基于热传导理论,针对某碾压混凝土重力坝施工期和运行期的整个过程,采用三维有限元数值仿真分析方法,进行了温度场和温度应力场的计算分析。计算结果表明:提出的温控施工方案可有效降低坝体的最高温度和温度应力,并且此施工方案可满足相关规范要求和该工程的温控设计要求。同时,此研究成果亦可为类似工程提供借鉴。  相似文献   

10.
已建的清江水布垭面板堆石坝高达233m,是目前世界上最高的混凝土面板堆石坝.对堆石体采用"南水"双屈服面弹塑性模型,采用实际的坝料分区与填筑过程,根据施工期的坝体沉降曲线,对坝体填料的参数进行了反分析.在此基础上对大坝的应力与变形特性进行三维弹塑性数值仿真分析,模拟面板堆石坝的实际填筑过程和蓄水过程,对大坝的运行性状进行研究.研究结果表明:对于233m的超高混凝土面板堆石坝,正常运行期,坝体变形较大,不考虑堆石体流变时.坝体最大沉降为2.29m,最大水平向位移为58.5cm.面板最大挠度为72.9cm,顺坡向位移最大为6.4cm,顺坡向出现拉应力,最大值超过4.0MPa.面板竖缝的变形不超过10mm,周边缝的三向变形不超过20mm,均在止水结构可承受的范围内.  相似文献   

11.
MgO微膨胀混凝土拱坝裂缝的非线性模拟   总被引:2,自引:0,他引:2  
沙老河拱坝利用MgO混凝土的微膨胀性 ,不分横缝 ,不做温控 ,整体浇筑而成 ,在拱坝完工的当年冬季和次年冬季 ,坝体出现了多条裂缝。本文利用水科院提出的MgO混凝土膨胀模型及开发的SAPTIS程序 ,采用实际的施工资料、材料参数及气象条件 ,对坝体的温度场、应力场及裂缝开裂过程进行了仿真计算分析 ,并对裂缝产生的原因进行了研究 ,结果表明 ,数值模拟的裂缝开裂状况与实际观测结果相吻合。  相似文献   

12.
溪柄碾压混凝土薄拱坝设计采用了仿真的材料热学参数.这些参数是在预测的施工温度条件下进行的材料实验中测定的.设计模拟了施工全过程,进行坝体的累计温度及自重徐变应力计算,提供施工期末初应力.本文提供运行期某一时刻水压和温度下相对施工期末的简易计算位移,并把计算值和短系列的原型观测数据进行比较修正.上述两者应力叠加即为该时全应力值.运行期位移突变或向下游变位过大都不安全.  相似文献   

13.
温度致裂是大体积混凝土施工期面临的难题,而温度应力控制是防裂控裂的关键,为此提出了一种基于人工智能、运筹学、自动控制和数值仿真交叉型新四元理论结构形式的大体积混凝土温度应力智能控制理论。基于该理论实现的温度应力智能控制系统包含全面感知、智能决策和自动控制三部分,全面感知单元采集分析各类施工条件、材料性能及仿真计算数据,智能决策单元通过全局优化方法给出最优冷却通水策略,自动控制单元依据优化策略实现双闭环控制。应用举例表明,提出的大体积混凝土温度应力智能控制理论可实现混凝土浇筑全过程温度应力的智能控制,在确保每一仓混凝土施工期温度应力均符合安全要求的基础上充分发挥材料的性能。  相似文献   

14.
外掺MgO混凝土不分横缝快速筑拱坝仿真分析   总被引:2,自引:0,他引:2  
外掺MgO混凝土不分横缝快速筑拱坝是一项新的筑坝技术,广东省阳春市长沙拱坝是国内、外全面采用该项技术建成的第一座拱坝。本文采用了一种新的考虑温度历程效应的MgO微膨胀混凝土仿真分析模型,根据实际观测资料对长沙坝进行了有限元仿真分析,并对坝体运行过程中出现的裂缝成因进行了初步研究,同时研究了掺入MgO以后混凝土自生体积膨胀对拱坝应力状态的改善效果。仿真结果表明,外掺MgO混凝土可以补偿坝体温度拉应力,对这一类中小型拱坝不分横缝,简化温控措施,通仓连续快速浇筑施工,缩短工期。  相似文献   

15.
本文结合公伯峡混凝土面板堆石坝,针对施工期可能发生的最不利寒潮情况,进行了寒潮期间面板温度场和温度应力的全过程有限元仿真分析。结果表明,在寒潮冷击作用下,面板表面及中心的温度将随着寒潮的发生而持续降低,其中面板表面温度降幅最大此时面板表面和中心均出现拉应力,面板表面的最大主应力大于面板中心的最大主应力;面板表面和中心的最大主应力均发生在面板中部,即高程约为坝高一半的位置;采取保护措施可以明显削减寒潮始末的降温幅度及最大主应力增幅,保护措施越强其削减效果越好。  相似文献   

16.
温度裂缝是混凝土结构产生裂缝的主要原因之一,而水管冷却是混凝土结构中常用且非常有效的温控措施之一,针对现行通水冷却中常出现的混凝土温度和水温温差过大、降温速率过快、温度梯度较大等不利情况,提出水管冷却时空动态控制方法。结合某工程实例,基于有限元热流耦合算法建立三维有限元模型,对在施工过程中易于进行动态控制的冷却时间、水温、流量和水流方向四个影响水管冷却效果的因素进行敏感性分析,并对比计算分析水管冷却传统方法和时空动态控制法的温度场和温度应力场,验证水管冷却时空动态控制法的优越性,推荐出水管冷却动态控制参数和流程方法。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号