首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 140 毫秒
1.
In this article, polyamide 6 (PA6), maleic anhydride grafted ethylene‐propylene‐diene monomer (EPDM‐g‐MA), high‐density polyethylene (HDPE) were simultaneously added into an internal mixer to melt‐mixing for different periods. The relationship between morphology and rheological behaviors, crystallization, mechanical properties of PA6/EPDM‐g‐MA/HDPE blends were studied. The phase morphology observation revealed that PA6/EPDM‐g‐MA/HDPE (70/15/15 wt %) blend is constituted from PA6 matrix in which is dispersed core‐shell droplets of HDPE core encapsulated by EPDM‐g‐MA phase and indicated that the mixing time played a crucial role on the evolution of the core‐shell morphology. Rheological measurement manifested that the complex viscosity and storage modulus of ternary blends were notable higher than the pure polymer blends and binary blends which ascribed different phase morphology. Moreover, the maximum notched impact strength of PA6/EPDM‐g‐MA/HDPE blend was 80.7 KJ/m2 and this value was 10–11 times higher than that of pure PA6. Particularly, differential scanning calorimetry results indicated that the bulk crystallization temperature of HDPE (114.6°C) was partly weakened and a new crystallization peak appeared at a lower temperature of around 102.2°C as a result of co‐crystal of HDPE and EPDM‐g‐MA. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

2.
The influence of two different compatibilizers and their combination (maleic anhydride grafted high density polyethylene, HDPE‐g‐MA; maleic anhydride grafted linear low density polyethylene, LLDPE‐g‐MA; and 50/50 wt % mixture of these compatibilizers) on the rheological, thermomechanical, and morphological properties of HDPE/LLDPE/organoclay blend‐based nanocomposites was evaluated. Nanocomposites were obtained by melt‐intercalation in a torque rheometer in two steps. Masterbatches (compatibilizer/nanoclay 2:1) were obtained and subsequently diluted in the HDPE/LLDPE matrix producing nanocomposites with 2.5 wt % of nanoclay. Wide angle X‐ray diffraction (WAXD), steady‐state rheological properties, and transmission electron microscopy (TEM) were used to determine the influence of different compatibilizer systems on intercalation and/or exfoliation process which occurs preferentially in the amorphous phase, and thermomechanical properties. The LLDPE‐g‐MA with a high melt index (and consequently low viscosity and crystallinity) was an effective compatibilizer for this system. Furthermore, the compatibilized nanocomposites with LLDPE‐g‐MA or mixture of HDPE‐g‐MA and LLDPE‐g‐MA exhibited better nanoclay's dispersion and distribution with stronger interactions between the matrix and the nanoclay. These results indicated that the addition of maleic anhydride grafted polyethylene facilitates both, the exfoliation and/or intercalation of the clays and its adhesion to HDPE/LLDPE blend. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 130: 1726–1735, 2013  相似文献   

3.
The melt rheological analysis of high‐density polyethylene reinforced with vapor‐grown carbon nanofibers (VGCNFs) was performed on an oscillatory rheometer. The influence of frequency, temperature, and nanofiber concentration (up to 30 wt %) on the rheological properties of composites was investigated. Specifically, the viscosity increase is accompanied by an increase in the elastic melt properties, represented by the storage modulus G′, which is much higher than the increase in the loss modulus G″. The composites and pure PE exhibit a typical shear thinning behavior as complex viscosity decreases rapidly with the increase of shearing frequency. The shear thinning behavior is much more pronounced for the composites with high fiber concentration. The rheological threshold value for this system was found to be around 10 wt % of VGCNF. The damping factor was reduced significantly by the inclusion of nanofibers into the matrix. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 155–162, 2004  相似文献   

4.
In the present study, high density polyethylene (HDPE)‐based composites containing different amounts of fumed silica (FS) were prepared by melt compounding in a corotating twin screw extruder. Polyethylene‐g‐maleic anhydride copolymer (PE‐g‐MA) containing 1 wt% maleic anhydride was used for interface modification between filler and polymer. The interaction between the surface hydroxyl groups of fumed silica nanoparticles with maleic anhydride groups of PE‐g‐MA led to a finer dispersion of the filler in the HDPE matrix. The terminal complex viscosity and terminal storage modulus were highest at 1 wt% filler loading due to widely spread network formation by FS nanoparticles. This filler network plausibly got disturbed at higher filler content and/or interface modification which was reflected in their stress relaxation behavior also. The dynamic rheological behavior of the composites was explained in terms of morphological observations. POLYM. ENG. SCI., 2013. © 2012 Society of Plastics Engineers  相似文献   

5.
In this work, high‐density polyethylene (HDPE)‐based nanocomposites having different concentrations of Sepiolite (1–10 wt %) and compatibilizer, that is, PE‐graft‐maleic anhydride (PE‐g‐MA) of varying molecular weight and maleic anhydride content were prepared by melt compounding. The influence of Sepiolite amount and compatibilizer polarity and molar mass on the crystallization behavior [differential scanning calorimeter (DSC) and X‐ray diffraction (XRD)], rheological properties (oscillatory rheometer) and dimensional stability [dynamic mechanical analyzer (DMA) and heat deflection temperature (HDT)] of the nanocomposites was investigated. It was found that Sepiolite did not affect the crystallization behavior of HDPE. The rheological results show that the incorporation of Sepiolite into HDPE matrix up to 10 wt % increases the complex viscosity of polymer. Storage modulus and loss modulus both in oscillatory rheometry and in DMA were highest for nanocomposite prepared using 10 wt % Sepiolite owing to the improved mechanical restrain by the dispersed phase. In the presence of compatibilizer, the values of storage modulus and loss modulus were lower as compared to uncompatibilized nanocomposites at same loading of Sepiolite. The reduction in modulus is more pronounced in composites prepared using compatibilizer of lower molar mass as compared to those prepared using higher molar mass compatibilizer. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45197.  相似文献   

6.
In the present work, different compatibilizers, namely polyethylene‐graft‐maleic anhydride (PE‐g‐MA), polypropylene‐graft‐maleic anhydride (PP‐g‐MA), and polystyrene‐block‐poly(ethylene‐ran‐butylene)‐block‐polystyrene‐graft‐maleic anhydride (SEBS‐g‐MA) were used on green composites derived from biobased polyethylene and peanut shell (PNS) flour to improve particle–polymer interaction. Composites of high‐density polyethylene/peanut shell powder (HDPE/PNS) with 10 wt % PNS flour were compatibilized with 3 wt % of the abovementioned compatibilizers. As per the results, PP‐g‐MA copolymer lead to best optimized properties as evidenced by mechanical characterization. In addition, best particle–matrix interface interactions with PP‐g‐MA were observed by scanning electron microscopy (SEM). Subsequently HDPE/PNS composites with varying PNS flour content in the 5–30 wt % range with PP‐g‐MA compatibilizer were obtained by melt extrusion and compounding followed by injection molding and were characterized by mechanical, thermal, and morphological techniques. The results showed that PNS powder, leads to an increase in mechanical resistant properties (mainly, flexural modulus, and strength) while a decrease in mechanical ductile properties, that is, elongation at break and impact absorbed energy is observed with increasing PNS flour content. Furthermore, PNS flour provides an increase in thermal stability due to the natural antioxidant properties of PNS. In particular, composites containing 30 wt % PNS powder present a flexural strength 24% and a flexural modulus 72% higher than the unfilled polyethylene and the thermo‐oxidative onset degradation temperature is increased from 232 °C up to 254 °C thus indicating a marked thermal stabilization effect. Resultant composites can show a great deal of potential as base materials for wood plastic composites. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43940.  相似文献   

7.
In this article, polyamide 6 (PA6)/clay nanocomposites, PA6/polyethylene grafted maleic anhydride (PE‐g‐MA) blends, and PA6/PE‐g‐MA/clay nanocomposites were prepared and their gasoline permeation behavior and some mechanical properties were investigated. In PA6/clay nanocomposites, cloisite 30B was used as nanoparticles, with weight percentages of 1, 3, and 5. The blends of PA6/PE‐g‐MA were prepared with PE‐g‐MA weight percents of 10, 20, and 30. All samples were prepared via melt mixing technique using a twin screw extruder. The results showed that the lowest gasoline permeation occurred when using 3 wt % of nanoclay in PA6/clay nanocomposites, and 10 wt % of PE‐g‐MA in PA6/PE‐g‐MA blends. Therefore, a sample of PA6/PE‐g‐MA/clay nanocomposite containing 3 wt % of nanoclay and 10 wt % of PE‐g‐MA was prepared and its gasoline permeation behavior was investigated. The results showed that the permeation amount of PA6/PE‐g‐MA/nanoclay was 0.41 g m?2 day?1, while this value was 0.46 g m?2 day?1 for both of PA6/3wt % clay nanocomposite and PA6/10 wt % PE‐g‐MA blend. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40150.  相似文献   

8.
BACKGROUND: Conventional rubber‐like toughening modifiers are soft and amorphous, and when used to toughen polyamide 11 (PA11) they commonly induce a decrease in the tensile strength and modulus. In this study, crystallizable polyethylene (PE) derivatives, i.e. linear low‐density polyethylene (LLDPE) and maleic anhydride‐grafted polyethylene (PE‐g‐MA), were adopted to toughen PA11. RESULTS: Compared to pure PA11, a highest improvement by a factor of eight in the impact toughness was achieved; also, the tensile strength and modulus could be maintained at a relatively high level. PE‐g‐MA acted as a compatibilizer for PA11 and LLDPE, bringing strong interfacial adherence, and especially a domain‐in‐domain morphology observed in PA11/PE‐g‐MA/LLDPE (70/10/20 by weight) blends. The observation that PA11 was toughened by the crystallizable PE derivatives is discussed in depth, based on the combined effect of surface crystallization of LLDPE on pre‐formed PA11 crystallites and interfacial compatiblization between PA11 and PE‐g‐MA. CONCLUSION: The crystallizable PE derivatives LLDPE and PE‐g‐MA were shown to be effective toughening modifiers for the proportions PA11/PE‐g‐MA/LLDPE 70/10/20 (by weight), which is considered to be an optimum composition: special domain‐in‐domain morphology was observed indicating a good dispersion of PE in the PA11 matrix and strong interfacial adherence between PE phase and PA11 phase. The reason why strength and modulus were maintained at a high level in the as‐prepared blends was attributed to the existence of rigid crystalline domains in PE. Copyright © 2009 Society of Chemical Industry  相似文献   

9.
In this study, rice‐straw (RS) filled high density polyethylene (HDPE) composites were manufactured by extrusion and injection molding. Three compatibilizers, which are unfunctionalized ethylene/propylene copolymer (uEPR), maleic anhydride grafted EPR (EPR‐g‐MA) and PE‐g‐MA, and their combinations were introduced to strengthen fiber‐matrix interphase. The mechanical and morphological properties of composites were investigated. For single‐compatibilizer system, PE‐g‐MA or EPR‐g‐MA alone enhanced tensile, flexural, and impact strengths of resultant composites compared with HDPE/RS system without compatibilizers. Different toughening origins of individual compatibilizer were discussed based on composites' interphase morphologies and mechanical properties. For combined‐compatibilizers system, the PE‐g‐MA/EPR weight ratio is important for several properties of composites. The optimum ratio was considered as 2 : 1 and 1 : 1 for PE‐g‐MA/uEPR and PE‐g‐MA/EPR‐g‐MA modified composites, respectively. Also, composites modified by combined PE‐g‐MA/EPR‐g‐MA showed better impact strength than that modified by PE‐g‐MA alone. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

10.
Thermoplastic natural rubber (TPNR) composites of natural rubber and high‐density polyethylene at a ratio of 70/30 were prepared by melt blending with aramid fibers using an internal mixer. The fiber loadings were varied from 0 to 30% for systems with and without graft‐copoly(ethylene/maleic anhydride) (PE‐g‐MA) as a compatibilizer to study the variation of mechanical and dynamic mechanical properties. The tensile strength, modulus, hardness, and storage modulus improved with fiber loadings for both systems. The interaction between the matrix and fiber had also improved with the addition of PE‐g‐MA. Nevertheless, different behavior was observed in tan δ peak. The tan δ peak decreased with the increment of Twaron composition in the system with PE‐g‐MA and increased in the system without PE‐g‐MA. The results showed the importance of PE‐g‐MA in the system in improving the mechanical properties of Twaron–TPNR composite. POLYM. COMPOS., 27:395–401, 2006. © 2006 Society of Plastics Engineers  相似文献   

11.
Alumina (Al2O3) fiber/high density polyethylene (HDPE) composites were prepared by molding injection with or without compatibilizer, in which, maleic anhydride‐grafted polyethylene (PE‐g‐MA) and acrylic acid‐grafted polyethylene (PE‐g‐AA) were used as the compatibilizers. The thermal conductivities of the composites were anisotropic and the conductivities in the injection direction of the samples were higher than those in perpendicular direction of the injection. The anisotropic thermal conductivity for Al2O3/PE‐g‐AA/HDPE was the most obvious and this composite also gave the best mechanical performance. The SEM and DMA test revealed that PE‐g‐AA was more effective than PE‐g‐MA in improving the matrix–filler interaction. The high interfacial interaction was more favorable for the viscous flow‐induced fiber orientation, which resulted in the largest anisotropic degree of thermal conductivity of the Al2O3/PE‐g‐AA/HDPE among the studied composite. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

12.
The rheological behavior of polyester recycled tire fibers (RTF) mixed with ground tire rubber and linear low density polyethylene (LLDPE) with and without styrene–ethylene–butylene–styrene grafted maleic anhydride (SEBS‐g‐MA) as a compatibilizer was investigated in the melt (small amplitude oscillatory shear) and solid (dynamic mechanical analysis) states. In particular, the effect of RTF content (10, 25, and 50 wt %), extrusion screw speed (110, 180, and 250 rpm), and temperature profiles (extrusion and injection molding) was studied. In general, it was found that the rheological properties in the melt state (modulus and viscosity) of the uncompatibilized samples increased with RTF content, but higher values were obtained when SEBS‐g‐MA was added due to better interfacial coupling. Although similar results were obtained in the solid state, it was shown that melt rheology can better explain the variations as the measurements are more sensitive to the interface quality since the matrix contribution is less important. © 2018 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 46563.  相似文献   

13.
Blends were made from linear low‐density polyethylene (LLDPE) and various amounts of soya powder. The soya powder content was varied from 5 to 20 wt%. Polyethylene‐g‐(maleic anhydride) (PE‐g‐MA) was used as a compatibilizer. Tensile strength and elongation at break (EB) decreased with increasing soya powder content. However, Young's modulus increased with the incorporation of soya powder. The addition of PE‐g‐MA as a compatibilizer increased the tensile strength, EB, and modulus of the blends. The interfacial adhesion between soya powder and LLDPE was improved by the incorporation of PE‐g‐MA, as demonstrated by scanning electron microscopy. Increasing the content of soya powder reduced the crystallinity of the LLDPE phase. The addition of PE‐g‐MA had no significant effect on melting temperature, but the degree of crystallinity of the LLDPE was increased. The thermal stability of the blends was determined by using thermogravimetric analysis. Thermal stability decreased with increasing soya powder loading. However, the addition of PE‐g‐MA slightly increased the thermal stability of LLDPE/(soya powder) blends. J. VINYL ADDIT. TECHNOL., 2009. © 2009 Society of Plastics Engineers  相似文献   

14.
The effect of chemical treatment at fiber–plastic interface and fiber loading level on creep property of bamboo fiber high‐density polyethylene (BF/HDPE) composites was investigated. For single modifier systems, the use of maleic anhydride grafted polyethylene (PE‐g‐MA) as a coupling agent helped reduce the creep and achieved the optimum effect at the 5.7% loading level. The addition of either a semicrystalline or an amorphous MA grafted ethylene propylene rubber (sEPR‐g‐MA or aEPR‐g‐MA) as an impact modifier increased the creep. For the combined modifiers, the use of PE‐g‐MA in EPR‐g‐MA modified composites gradually improved creep performance. Four‐element Burgers model was shown to fit measured creep data well only within the specified test period. However, both partially stretched Burgers (PSB) model and fully stretched Burgers (FSB) model could be applied for characterization and prediction when the stretching exponent was fixed at certain given values. The FSB model offered a better long‐term prediction based on the short‐term creep data. Time‐temperature superposition technique produced smooth master creep curves through horizontal shifts, but it slightly over‐predicted the long‐term creep for most composite systems. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers  相似文献   

15.
Waste‐polyethylene (WPE) in packaging, instead of virgin polymer, was utilized as a modifier of base asphalt, and rheological properties of the modified asphalt were studied. Results show that the modified asphalt possesses better anti‐distortion capacity than the base asphalt, as indicated by the fact that the modified asphalt has higher viscosity and smaller endothermic peak dispersion in the transformation process of asphalt aggregation. Compared with base asphalt, the modified asphalt has higher complex modulus (G*), storage modulus (G′), and dissipation modulus (G″). In addition, the modified asphalt has smaller phase angle (δ), less tangent (tanδ), and lower rut factor (G*/sinδ), reflecting the high‐temperature rut resistance of the asphalt. The improvement of the rheological properties is related to the main features of the modified asphalt, including the swelling, whereas packaging‐waste‐PE absorbs low‐molecular‐weight fractions of asphalt, the displacement restriction of asphalt particles, and the molecular structure and performance of PE molecules. J. VINYL ADDIT. TECHNOL., 21:215–219, 2015. © 2014 Society of Plastics Engineers  相似文献   

16.
The effects of glycerol and polyethylene‐grafted maleic anhydride (PE‐g‐MA) on the morphology, thermal properties, and tensile properties of low‐density polyethylene (LDPE) and rice starch blends were studied by scanning electron microscopy (SEM), differential scanning calorimetry, and the Instron Universal Testing Machine, respectively. Blends of LDPE/rice starch, LDPE/rice starch/glycerol, and LDPE/rice starch/glycerol/PE‐g‐MA with different starch contents were prepared by using a laboratory scale twin‐screw extruder. The distribution of rice starch in LDPE matrix became homogenous after the addition of glycerol. The interfacial adhesion between rice starch and LDPE was improved by the addition of PE‐g‐MA as demonstrated by SEM. The crystallization temperatures of LDPE/rice starch/glycerol blends and LDPE/rice starch/glycerol/PE‐g‐MA blends were similar to that of pure LDPE but higher than that of LDPE/rice starch blends. Both the tensile strength and the elongation at break followed the order of rice starch/LDPE/glycerol/PE‐g‐MA blends > rice starch/LDPE/glycerol > LDPE/rice starch blends. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 344–350, 2004  相似文献   

17.
Blends containing various percentages of linear low‐density polyethylene and soya powder were prepared. The effects of polyethylene‐graft‐(maleic anhydride) (PE‐g‐MA) as a compatibilizer and soya powder content on the natural weathering were investigated. Blends without PE‐g‐MA were used as controls. The soya powder was varied from 5 to 40 wt% of the blends, and PE‐g‐MA was used at 50 wt% based on soya powder content. The samples were exposed to natural weathering in the northern part of Malaysia for 1 year. Higher decreases in tensile strength and elongation at break of the controls were observed as compared to those of the PE‐g‐MA compatibilized blends after the natural weathering. The Young's modulus of both controls and compatibilized blends increased over the environmental exposure period. A control sample lost 8.8% of its original weight after 1 year of weathering, whereas a compatibilized blend lost 7.5 wt% during the same period. J. VINYL ADDIT. TECHNOL., 2012. © 2012 Society of Plastics Engineers  相似文献   

18.
In this research, we attempt to improve the impact strength and the viscosity of PA (polyamide) by blending two elastomers, TPU (thermoplastic polyurethane) and POE‐g‐MA (maleic anhydride‐grafted polyethylene‐octene elastomer), in PA matrix with twin screw extruder. The ratio of blending is 80PA/20TPU and 80PA/20TPU/20POE‐g‐MA (66.66PA/16.67TPU/16.67POE‐g‐MA). Results indicate that POE‐g‐MA improves the low viscosity of PA and TPU during the blending process, and also their compatibility. Thus, the 80PA/20TPU/20POE‐g‐MA blend has better tensile stress and elongation than 80PA/20TPU blend, and furthermore POE‐g‐MA significantly improves the impact strength of PA, even to super‐toughness grade. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

19.
Morphology and rheological properties of low‐density polyethylene/linear low‐density polyethylene/thermoplastic starch (LDPE/LLDPE/TPS) blends are experimentally investigated and theoretically analyzed using rheological models. Blending of LDPE/LLDPE (70/30 wt/wt) with 5–20 wt % of TPS and 3 wt % of PE‐grafted maleic anhydride (PE‐g‐MA) as a compatibilizer is performed in a twin‐screw extruder. Scanning electron micrographs show a fairly good dispersion of TPS in PE matrices in the presence of PE‐g‐MA. However, as the TPS content increases, the starch particle size increases. X‐ray diffraction patterns exhibit that with increase in TPS content, the intensity of the crystallization peaks slightly decreases and consequently crystal sizes of the blends decrease. The rheological analyses indicate that TPS can increase the elasticity and viscosity of the blends. With increasing the amount of TPS, starch particles interactions intensify and as a result the blend interface become weaker which are confirmed by relaxation time spectra and the prediction results of emulsion Palierne and Gramespacher‐Meissner models. It is demonstrated that there is a better agreement between experimental rheological data and Coran model than the emulsion models. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44719.  相似文献   

20.
This work studied the rheological, thermal, and mechanical properties of bitumen modified by reclaimed polyethylene (PE), and polypropylene (PP) from different recycling sources. The rutting resistance under high temperature of polymer modified bitumen (PMB) was investigated by rheologically temperature ramp test and multiple stress creep recovery (MSCR) test. It is found that for some modified bitumen, a plateau of complex modulus G* could be formed with temperature increment, revealing rheological stability. Furthermore, these samples with rheological stability revealed a higher creep recovery and lower creep compliance measured by the MSCR test. Glass transition temperature (Tg) measured by dynamic mechanical analysis was used to evaluate the crack resistance under a low temperature of PMB. The influence of recycled PE on the Tg of modified bitumen was different from that of recycled PP modified bitumen, as compared with corresponding virgin polymer modified bitumen. A possible reason for the various effect of recycling sources on the service property of modified bitumen was explored by crystallization and melting behaviors of polymer in bitumen since that polymer with higher crystallinity degree could endow the modified bitumen stiffness, which was closely, related to their service property especially the rutting resistance.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号