首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
A series of copolymers, poly(acrylamide)‐co‐poly(N,N‐dimethylaminoethyl methacrylate)‐co‐poly(N‐cetyl DMAEMA) (abbreviation PDAMCn), was synthesized with different monomer ratios. The resulting copolymer solution shows pronounced viscosity–response property which is CO2‐triggered and N2‐enabled. Electrical conductivity experiment shows that tertiary amine group on DMAEMA experiences a protonate and deprotonate transition upon CO2 addition and its removal. In addition, different incorporation rates of DMAEMA leads to two kinds of morphological change in the presence of CO2 and thus induces different rheological behaviors. PDAMCn incorporating longer hydrophobic monomer (C18DM) show more pronounced initial viscosity and higher critical stress required to cause network deformation, which consequently enhances the viscosity–response property of the solution. The addition of NaCl could also tune the viscosity of PDAMCn solution. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 41468.  相似文献   

2.
A novel water‐soluble polymer was prepared by copolymerization and sulfomethylation using acrylamide (AM) and N‐allylbenzamide (NABI) as raw materials under mild conditions. The effects of ratio of AM to NABI, initiator concentration, reaction temperature, pH, and monomer concentration on the copolymerization were studied. The sulfonates copolymer was characterized by infrared (IR) spectroscopy, 1H NMR spectroscopy, elemental analysis, and atomic force microscopy (AFM). It was found that the sulfonates copolymer could achieve up to 25%, 30% retention rate of the viscosity at a high temperature (120°C) and a vigorous shear condition (1000 s?1). It was also found that the sulfonates copolymer had moderate salt tolerance (NaCl, CaCl2, and MgCl2·6H2O) and its viscosity could be restored to the original value when the shear rate changed from 170 to 510 s?1 and 510 to 170 s?1. At last, the enhanced oil recovery (EOR) of the sulfonates copolymer was tested by core flood, and with up to 10.6% EOR was afforded in presence of 5000 mg/L NaCl brine at 60°C. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

3.
N,N‐Diallyl nicotinamide (DANA) and acrylic acid (AA) were used to react with acrylamide (AM) and synthesize a novel nicotinic acid functionalized water‐soluble copolymer AM/AA/DANA by redox free‐radical polymerization. Then, the acrylamide/sodium acrylamido methanesulfonate/acrylic acid/N,N‐diallyl nicotinamide (AM/AMS/AA/DANA) was obtained by the introduction of the ? SO3? group into AM/AA/DANA after sulfomethylation. The optimal reaction conditions, such as the monomer ratio, initiator concentration, reaction temperature, and pH of the copolymerization or sulfomethylation, were investigated. Both AM/AA/DANA and AM/AMS/AA/DANA were characterized by IR spectroscopy, 1H‐NMR, scanning electron microscopy, and intrinsic viscosity testing. We found that the AM/AMS/AA/DANA had a remarkable temperature tolerance (120°C, viscosity retention rate = 39.8%), shear tolerance (1000 s?1, viscosity retention rate = 23.3%), and salt tolerance (10 g/L NaCl, 1.5 g/L MgCl2, 1.5 g/L CaCl2, viscosity retention rates = 37.4, 27.5, and 21.6%). In addition, the result of the core flood test showed that the about 13.1% oil recovery could be enhanced by 2.0 g/L AM/AMS/AA/DANA at 70°C. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40165.  相似文献   

4.
A triblock copolymer, containing a polyethylene glycol (PEG) block and two symmetrical poly(2‐(dimethylamino)ethyl methacrylate) (PDM) blocks, was synthesized by using PEG‐based macroinitiator with copper‐mediated living radical polymerization. The conductivity tests showed that the copolymer exhibited switchable responsiveness to CO2, i.e., a relatively high conductivity of solution can be switched on and off by bubbling and removing of CO2. According to the nuclear magnetic resonance results, the CO2‐switchable conductivity variation could be attributed to protonation and deprotonation of tertiary amine groups in PDM blocks. Moreover, at a proper weight concentration 0.5%, the copolymer aqueous solution displayed a CO2‐switchable viscosity variation. Scanning electron microscopy, cryogenic transmission electron microscopy, and dynamic light scattering characterization jointly demonstrated that the viscosity variation was the result of a CO2‐switchable vesicle‐network aggregate structure transition. This structure transition can actually be attributed to a hairpin‐line molecular configuration conversion in terms of the reasonable mechanism discussion. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44417.  相似文献   

5.
Copolymer of N,N‐dimethylacrylamide (NNDAM) and sodium 2‐acrylamido‐2‐methylpropanesulfonate (NaAMPS) have been prepared by free‐radical copolymerization and characterized with the help of molecular weight, molecular weight distribution, intrinsic viscosity, and monomer ratio in the copolymer. The solution behavior of a copolymer containing 26.62 wt % NaAMPS is studied in different solvents, namely, water (W), dimethyl sulfoxide (DMSO), ethylene glycol (EG), and ethanol (EtOH). The reduced viscosity of the copolymer is highly dependent on the ionic strength of the copolymer solution. The reduced viscosity decreases as a function of solvent selection in the order W > DMSO > EtOH > EG. The shapes of the ηsp / C vs. C plots indicate the polyelectrolyte behavior of the copolymer, except for the case of EG solutions, where nonpolyelectrolyte behavior is observed. However, at a certain degree of ionization attained by adding W as cosolvent, the copolymer begins to demonstrate polyelectrolyte behavior. For this copolymer, there exists a minimum concentration of brine (NaCl, CaCl2, etc.) above which solution viscosity is not further reduced. The copolymer solution behaves as a power law fluid, and exhibits time‐dependent thixotropic behavior. The copolymer cannot regain its solution viscosity when allowed to shear at a constant rate for long period of time. The reduced viscosities of copolymer solutions increase with increasing temperature in W and DMSO, yet decreases with increasing temperature in EG. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 1521–1529, 2002  相似文献   

6.
Thermoresponsive graft copolymers of ε‐caprolactone and N‐isopropylacrylamide were synthesized by a combination of ring‐opening polymerization and the sequential atom transfer radical polymerization (ATRP). The copolymer composition, chemical structure, and the self‐assembled structure were characterized. The graft length and density of the copolymers were well controlled by varying the feed ratio of monomer to initiator and the fraction of chlorides along PCL backbone, which is acting as the macroinitiator for ATRP. In aqueous solution, PCL‐g‐PNIPAAm can assemble into the spherical micelles which comprise of the biodegradable hydrophobic PCL core and thermoresponsive hydrophilic PNIPAAm corona. The critical micelle concentrations of PCL‐g‐PNIPAAm were determined under the range of 6.4–23.4 mg/L, which increases with the PNIPAAm content increasing. The mean hydrodynamic diameters of PCL‐g‐PNIPAAm micelles depend strongly on the graft length and density of the PNIPAAm segment, allowing to tune the particle size within a wide range. Additionally, the PCL‐g‐PNIPAAm micelles exhibit thermosensitive properties and aggregate when the temperature is above the lower critical solution temperature. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 41115.  相似文献   

7.
Using 2‐acrylamido‐2‐methyl propane sulfonic acid (AMPS), acrylamide (AM), N,N‐dimethyl acrylamide (NNDMA), and maleic anhydride (MA), a new dispersive type fluid loss control additive (FLCA) AMPS/AM/NNDMA/MA (PANM) was synthesized by free radical aqueous solution copolymerization, and the new FLCA could be used without dispersant existing in the cement. The optimal PANM (OPANM) was obtained under the optimum reaction conditions: mole ratio of AMPS/AM/NNDMA/MA = 4/2.5/2.5/1, monomer concentration = 32.5%, amount of (by weight of monomer) ammonium persulfate/sodium bisulfate = 1.0%, pH value = 4, and temperature = 40°C. The synthesized copolymer OPANM was identified by FTIR analysis. The evaluation results show the OPANM has excellent dispersing power, fluid loss control ability, thermal resistant, and salt tolerant ability. The OPANM was even stable when the temperature was below 300°C proved by TG analysis. The thickening time of the slurry containing the synthesized additive reduces as the temperature increases. The copolymer OPANM is expected to be an excellent FLCA. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

8.
Poly(N‐isopropylacrylamide) copolymers (PNIPAMs) containing pendent perfluoroalkyl (RF) or dodecyl groups have been synthesized by copolymerization of NIPAM with small amounts of RR‐acrylates or ‐methacrylates containing a sulfonamido moiety between the acrylate and RF groups or with dodecyl acrylate. Evidence for strong intermolecular hydrophobic association of the fluorocarbon groups is provided by large viscosity increases with copolymer concentration and upon addition of NaCl and surfactants. These interactions appear to be much stronger than that of the corresponding copolymers of poly(N,N‐dimethylacrylamide) with similar comonomer contents. Hydrophobic association between the RF groups is found to be much stronger than that of the corresponding dodecyl groups. The viscosity of some of the copolymer solutions, particularly in the presence of perfluorocarbon surfactants, was unusually temperature sensitive, decreasing by a factor of at least 1000 upon increasing the temperature from 10 to 20 °C. This large decrease is most probably related to the collapse of the copolymer coils near the lower critical solution temperature. This is in sharp contrast to the corresponding polyacrylamide or poly(N,N‐dimethylacrylamide) RF‐acrylate copolymers that show viscosity increases with increasing temperature in the 40–60 °C range. The NIPIAM copolymers were also found to be different from the acrylamide or N,N‐dimethylacrylamide perfluorocarbon acrylate copolymers in that they were found to be Newtonian at a low RF content but dilatant at a higher comonomer content. © 2000 Society of Chemical Industry  相似文献   

9.
The effects of the monomer ratio, surfactant, and crosslinker contents on the particle size and phase‐transition behavior of the copolymer poly(N‐isopropylacrylamide‐co‐methacrylic acid) (PNIPAAm–MAA) were investigated with Fourier transform infrared, differential scanning calorimetry, and dynamic laser scattering techniques. In addition to the thermoresponsive property of poly(N‐isopropylacrylamide), ionized methacrylic acid groups brought pH sensitivity to the PNIPAAm–MAA copolymer particles. The polymer particle size varied with the amounts of the monomer ratio, surfactant, and crosslinker. As the monomer ratio and crosslinker content increased and the amount of the surfactants decreased, the particle size increased. The influence of the crosslinker content on the particle size was less significant than the effect of the monomer ratio and surfactants. When the temperature increased, the particles tended to shrink and decreased in size to near or below 100 nm. Particle sizes at 20°C decreased to less than 100 nm with increased surfactant content. The control of the particle size within the 100‐nm range makes PNIPAAm–MAA copolymer particles useful for biomedical and heavy‐metal‐ion adsorption applications. © 2008 Wiley Periodicals, Inc. J Appl Polym Sci, 2008  相似文献   

10.
A vinyl amine–vinyl alcohol copolymer (VAm–VOH) was synthesized through free‐radical polymerization, basic hydrolysis in methanol, acidic hydrolysis in water, and an anion‐exchange process. In the copolymer, the primary amino groups on the VAm segment acted as the carrier for CO2‐facilitated transport, and the vinyl alcohol segment was used to reduce the crystallinity and increase the gas permeance. VAm–VOH/polysulfone (PS) composite membranes for CO2 separation were prepared with the VAm–VOH copolymer as a selective layer and PS ultrafiltration membrane as a support. The membrane gas permselectivity was investigated with CO2, N2, and CH4 pure gases and their binary mixtures. The results show that the CO2 transport obeyed the facilitated transport mechanism, whereas N2 and CH4 followed the solution–diffusion mechanism. The increase in the VAm fraction in the copolymer resulted in a carrier content increase, a crystallinity increase, and intermolecular hydrogen‐bond formation. Because of these factors, the CO2 permeance and CO2/N2 selectivity had maxima with the VAm fraction. At an optimum applied pressure of 0.14 MPa and at an optimum VAm fraction of 54.8%, the highest CO2 permeance of 189.4 GPU [1 GPU = 1 × 10?6 cm3(STP) cm?2 s?1 cmHg?1] and a CO2/N2 selectivity of 58.9 were obtained for the CO2/N2 mixture. The heat treatment was used to improve the CO2/N2 selectivity. At an applied pressure of 0.8–0.92 MPa, the membrane heat‐treated under 100°C possessed a CO2 permeance of 82 GPU and a CO2/N2 selectivity of 60.4, whereas the non‐heat‐treated membrane exhibited a CO2 permeance of 111 GPU and a CO2/N2 selectivity of 45. After heat treatment, the CO2/N2 selectivity increased obviously, whereas the CO2 permeance decreased. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2014 , 131, 40043.  相似文献   

11.
A water‐soluble poly(AM‐AA‐DMDAAC‐TCAP) was prepared using acrylamide (AM), acrylic acid (AA), diallyl dimethyl ammonium chloride (DMDAAC), and N‐allyl‐4‐methylbenzenesulfonamide (TCAP), and the synthesis conditions were investigated. The obtained copolymer was characterized by FTIR, 1H‐NMR, SEM, TG, and XRD. The temperature resistance and thickening function of the copolymer are improved significantly compared with that of partially hydrolyzed polyacrylamide. It is found that the viscosity of copolymer could achieve up to 53.3% retention rate at 120°C compared to that at 30°C. About 16.6% for enhanced oil recovery is obtained by poly(AM‐AA‐DMDAAC‐TCAP) brine solution at 65°C. In addition, the results of XRD show that 3000 mg/L copolymer combined with 10 wt % KCl solution could reduce the d‐spacing of sodium montmorillonite from 18.94 to 14.86 Å exhibiting remarkable effect on inhibiting hydration of clays. All the results demonstrate that poly(AM‐AA‐DMDAAC‐TCAP) have excellent performance for potential application in enhance oil recovery. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40727.  相似文献   

12.
Zwitterion (Z) monomer 3‐[diallyl{3‐(diethoxyphosphoryl)propyl}ammonio]propane‐1‐sulfonate underwent cyclocopolymerization with sulfur dioxide to give a new alternating copolymer poly(Z‐alt‐SO2) in excellent yield (ca 90%). The polyzwitterion (±) (PZ) (i.e. poly(Z‐alt‐SO2), bearing a diethylphosphonate as well as a sulfonate functionality in each repeat unit, upon ester hydrolysis gave its corresponding pH‐responsive polyzwitterionic acid (±) (PZA). The pH‐induced equilibrations (+) cationic polyelectrolyte ? (±) PZA ? polyzwitterion/anion (± ?) (PZAN) ? polyzwitterion/dianion (± =) (PZDAN) permitted us to examine the effects of charge types and their densities on the interesting solubility and viscosity behaviours. The apparent protonation constants of the basic functionalities &tbond;N±PO32? in (± =) PZDAN and &tbond;N±PO3H1? in (± ?) PZAN in salt‐free water and 0.1 mol L?1 NaCl were determined using potentiometric titrations. (±) PZA at a meagre concentration of 20 ppm was found to be an effective antiscalant to inhibit the precipitation of CaSO4 from its supersaturated solution: after 500 and 800 min, the respective scale inhibitions of 86 and 98% indicated its potential use as an effective antiscalant in reverse osmosis plant. © 2014 Society of Chemical Industry  相似文献   

13.
A modular β‐cyclodextrin copolymer for clay stabilization was prepared from 2‐O‐(allyloxy‐2‐hydroxyl‐propyl)‐β‐cyclodextrin (XBH), acrylamide (AM), 2‐acrylamido‐2‐methyl propane sulfonic acid (AMPS), and sodium acrylate (NaAA) via redox free‐radical copolymerization. The effects of reactive conditions (such as initiator concentration, monomer ratio, reaction temperature, and pH) on the apparent viscosity of the copolymer were investigated and the optimal conditions for the copolymerization were established. The copolymer obtained was characterized by infrared spectroscopy, scanning electron microscope, viscosity measurements, rheological measurement, core stress test, and X‐ray diffractometry. The crystalline interspace of MMT could be reduced from 18.95323 Å to 15.21484 Å by copolymer AM/NaAA/AMPS/XBH. And this water‐soluble copolymer also showed remarkable anti‐shear ability, temperature resistance, and salt tolerance (1000 s?1, viscosity retention rate: 35%; 120°C, viscosity retention rate: 75%; 10,000 mg/L NaCl, viscosity retention rate: 50.2%; 2000 mg/L CaCl2, viscosity retention rate: 48.5%; 2000 mg/L MgCl2, viscosity retention rate: 42.9%). © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

14.
Sulfur dioxide, N,N‐diallyl‐N‐carboethoxymethylammonium chloride, and the hydrophobic monomer N,N‐diallyl‐N‐octadecylammonium chloride were cyclocopolymerized in dimethyl sulfoxide using azobisisobutyronitrile (AIBN) as the initiator to afford water‐soluble cationic polyelectrolytes (CPE) having a five‐membered cyclic structure on the polymeric backbone. The CPE on acidic hydrolysis of the pendent ester groups gave the corresponding cationic acid salts (CAS), which, on treatment with sodium hydroxide, were converted to polybetaines (PB) and anionic polyelectrolytes (APE), as well as polymers PB/APE containing various proportions of zwitterionic (PB) and anionic fractions (APE) in the polymer chain. The solution properties of the CPE, APE, and PB/APE systems containing varying amounts of the hydrophobic monomers in the range 0–4 mol % were investigated by viscometric techniques. Treating the pH‐responsive CAS polymers 4 with different equivalents of NaOH varied the zwitterionic and anionic charge densities in the polymer chain. It was found that the PB/APE polymer with a ratio of 33 : 67 for the zwitterionic and anionic fractions in the polymer chain, respectively, gave the highest viscosity value. The polymers showed that concentration (C*HA) of around 1 g/dL was required for the manifestation of significant hydrophobic associations. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 1404–1411, 2005  相似文献   

15.
Two novel hydrophobically modified anionic polyacrylamides (HM‐PAMs), p(AM/NaA/NaAMC12S/BOAM) and p(AM/NaA/OP‐10‐AC/BOAM) have been prepared by an aqueous micellar copolymerization technique from acrylamide, sodium acrylate (NaA), sodium 2‐(acrylamido)dodecane‐1‐sulfonate (NaAMC12S), octylphenol polyoxyethylene acrylate (OP‐10‐AC), and small amounts of N‐benzyl‐N‐octylacrylamide, respectively, with the objective of investigating the copolymers' rheological behaviors and surface activities under various conditions such as polymer concentration, shear rate, temperature, and salinity. As expected, the copolymers exhibit improved thickening properties due to intermolecular hydrophobic associations as the solution viscosity of the copolymers increases sharply with increasing polymer concentration. A decrease in viscosity is observed with increasing temperature, and the solution viscosity of the copolymers decreases with increasing NaCl concentration. Furthermore, the block copolymers exhibit high air–liquid surface activities as the surface tensions (STs) decrease with increasing polymer concentration. This behavior is yet another evidence of polymolecular micelles formation of the copolymers in aqueous solution, and thus the high tendency to adsorb at an interface. The ST exhibited by the copolymers was found to be relatively insensitive to the concentration of salt (NaCl). Scanning electron micrographs showed large aggregates in solutions, which is formed by the association from the hydrophobic groups of the polymers. POLYM. ENG. SCI., 2012. © 2012 Society of Plastics Engineers  相似文献   

16.
A series of multifunctional homopolymer and copolymer of 2-dimethylamino ethyl methacrylate (DMAEMA) and N-isopropyl acrylamide (NIPAM) were designed and used to flocculate oil sands mature fine tailings (MFTs). Carbon dioxide (CO2) protonated the tertiary amine groups of P(DMAEMA) and P(DMAEMA–NIPAM) making their chains positively charged. The pH sensitivity of these polymers favored the flocculation of the negatively charged clays in MFT due to charge neutralization. Three different polymers, P(DMAEMA), P(NIPAM33–DMAEMA67), and P(NIPAM67–DMAEMA33) were synthesized via aqueous free-radical polymerization and used to flocculate MFT in the presence of CO2. Experimentally, CO2 was introduced in the system in three different ways: (1) CO2 was first bubbled into polymer solution, then the polymer solution was added to MFT, (2) CO2 was first bubbled into MFT and then the CO2-free polymer solution was added to MFT, and (3) both polymers and MFT were bubbled with CO2 separately, then mixed together. We compared the effects of the method of CO2 addition, copolymer composition, and polymer molecular weight on MFT flocculation performance. Our results indicate that CO2-switchable polymers can be employed to enhance the dewatering of challenging wastewaters such as oil sands tailings. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47578.  相似文献   

17.
Random copolymer hydrogels of N‐isopropylacrylamide and N‐ethylacrylamide (NEAM) were prepared using different monomer compositions in 1:1 methanol–water mixtures. The samples were characterized by cononsolvency study in methanol‐water mixtures at various temperatures, swelling properties measurements, scanning electron microscopy. With changing ratio of the monomers in the reaction mixture, the thermal, morphological and swelling properties, varied significantly. The change in the properties with monomer composition variation are interpreted based on the different thermoresponsive characteristics and interactions of gels of N‐isopropylacrylamide and NEAM (homo‐ and copolymer gels) in water and different methanol‐water mixtures, their variable compositions in the synthesis mixtures, and their morphologies. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45176.  相似文献   

18.
The zwitterionic monomer, 3‐(N,N‐diallyl,N‐carboethoxymethylammonio)propanesulfonate, on cocyclopolymerization with sulfur dioxide in DMSO using azoisobutyronitrile as the initiator afforded the polyzwitterion (PZ) copolymer in excellent yields. The PZ on acidic hydrolysis of the ester groups led to the corresponding polyzwitterionic acid (PZA). The pH‐responsive PZA on treatment with sodium hydroxide gave the new poly(eletrolyte‐zwitterion) (PEZ). The solubility, viscosity behaviors, and solution properties of the salt‐tolerant PZ, PZA, and PEZ were studied in detail. Like common PZs, PZ was found to be insoluble in salt‐free but soluble in salt‐added water. The apparent basicity constants of the carboxyl group in PEZ have been determined. As the name implies, the PEZ possesses dual type of structural feature common to both conventional anionic polyelectrolytes and PZs, and its aqueous solution behavior is found to be similar to that observed for a typical alternating anionic‐zwitterionic copolymer. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

19.
Poly (acrylamide‐dimethyldiallylammonium chloride) (PAM‐DMDAAC) particles have been prepared via dispersion polymerizations using poly (vinyl pyrrolidone) (PVP) as a steric stabilizer in ethanol‐water media. The monomer reactivity ratios of acrylamide (AM, r1) and dimethyldiallylammonium chloride (DMDAAC, r2) were determined as 6.664 and 0.120, respectively, which means that PAM‐DMDAAC is a nonideal copolymer. The effects of various polymerization parameters (e.g., concentration of monomer and initiator, medium polarity, the ratio of AM to DMDAAC, initial temperature and ethylene diamine tetraacetic acid disodium (EDTA)) on the intrinsic viscosity and conversion of copolymer have been investigated. The copolymer was characterized by FTIR and NMR. The optimum operating conditions for preparing PAM‐DMDAAC were determined as ethanol content 50%, Cmonomer (wt %) 40%, nAM: nDMDAAC 8 : 2, Cinitiator (wt %) 0.04% and initiate temperature 40°C. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

20.
The aim of the study was to investigate the synthesis of a copolymer bearing cyclic carbonate and its miscibility with styrene/acrylonitrile copolymer (SAN) or poly(vinyl chloride) (PVC). (2‐Oxo‐1,3‐dioxolan‐4‐yl)methyl vinyl ether (OVE) as a monomer was synthesized from glycidyl vinyl ether and CO2 using quaternary ammonium chloride salts as catalysts. The highest reaction rate was observed when tetraoctylammonium chloride (TOAC) was used as a catalyst. Even at the atmospheric pressure of CO2, the yield of OVE using TOAC was above 80% after 6 h of reaction at 80°C. The copolymer of OVE and N‐phenylmaleimide (NPM) was prepared by radical copolymerization and was characterized by FTIR and 1H‐NMR spectroscopies and differential scanning calorimetry (DSC). The monomer reactivity ratios were given as r1 (OVE) = 0.53–0.57 and r2 (NPM) = 2.23–2.24 in the copolymerization of OVE and NPM. The films of poly(OVE‐co‐NPM)/SAN and poly(OVE‐co‐NPM)/PVC blends were cast from N‐dimethylformamide. An optical clarity test and DSC analysis showed that poly(OVE‐co‐NPM)/SAN and poly(OVE‐co‐NPM)/PVC blends were both miscible over the whole composition range. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 1809–1815, 2000  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号