首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
Glycidyl methacrylate (GMA) has been grafted on polypropylene (PP) with the aid of styrene (St) comonomer, by changing dicumyl peroxide initiator content, GMA level, and St concentration. The performance of the resulting PP-g-GMA reactive material towards static and dynamic mechanical properties of poly (ethylene terephthalate) (PET) was monitored in terms of grafting reaction variables and compatibilizer content. Fourier transform infrared spectroscopy, scanning electron microscopy, mechanical properties, melt flow rate, and impact strength analyses were applied to correlate structural changes due to grafting (or undesired chain scission) with blends’ properties. The competition between the desired reaction, i.e., GMA grafting onto PP chain, and undesired chain scission of PP macroradicals due to thermal degradation, was discussed based on torque–time curves and mechanical properties. Manipulation of grafting variables was responsible for a special behavior over properties, means that optimal or ascending/descending trends, which noticed high sensitivity of PET toughening to GMA grafting efficiency.  相似文献   

2.
Polyamide 6 (PA 6) and hydrogenated nitrile rubber (H‐NBR) were blended with various blend ratios in a brabender plasticoder at 240°C/100 rpm. The processing characteristics with a mixing torque of the blends were investigated. The effect of the blend ratio on physical properties such as tensile strength, Young's modulus, elongation at break, permanent set, hardness, and swelling behavior of blends was analyzed. Most mechanical properties were found to decrease with an addition of H‐NBR. The morphology of the blends was observed, and the results show a two phase system where the component with high proportions exists as a continuous phase. A cocontinuous phase was observed in blend ratios of 50/50 and 40/60. Dynamic mechanical properties were observed to study a viscoelastic property of the blends. In addition, the effect of dynamic vulcanization with peroxide on physical properties was studied, and the influence of peroxide on PA 6 was also examined. It was found that the peroxide can have an effect on PA 6 as well as act as a crosslinker to H‐NBR. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

3.
The mixing of incompatible polymers such as polyethylene terephthalate (PET) and styrene‐butadiene rubber (SBR) produces a blend with poor mechanical and impact properties, because polymeric phases interact weakly with each other and segregate. The use of SBR grafted with maleic anhydride (MAH) increases the compatibility of the SBR‐PET system by generating higher interactions and chemical links between the ingredients of the blend. The induced compatibility is reflected in the 2.5‐fold increase in the impact resistance of the blend as compared to that of pure PET. The grafting reaction to produce SBR‐g‐MAH is carried out by reactive extrusion using a reaction initiator, benzoyl peroxide (BPO), and the extent of the reaction depends on the concentration of MAH and BPO. Results indicate the close relationship between processing conditions and microstructural parameters, such as particle diameter and interparticle distances of the dispersed rubber phase, necessary to achieve the optimum impact resistance.  相似文献   

4.
In the quest to improve the thermooxidative aging of the poly(vinyl chloride)/epoxidized natural rubber (PVC/ENR) blend, nitrile rubber (NBR) was incorporated into the blend to yield a ternary blend of PVC/ENR/NBR. A Brabender Plasticorder with a mixing attachment was used to perform the melt mixing at 150°C and 50 rpm followed by compression molding. The mechanical properties, dynamic mechanical properties, and thermooxidative aging behavior of the ternary blend were compared with those of the binary blends (i.e., PVC/ENR and PVC/NBR). It was found that the ternary blend exhibits mechanical properties which are superior to those of PVC/ENR. A single glass transition temperature (T g) obtained from dynamic mechanical analysis coupled with synergism in the modulus and some other mechanical properties indicate that PVC, ENR, and NBR form a single phase (miscible system) in the ternary blend. Di-2-ethyl hexylphthalate (DOP) plasti-cizer improves the aging resistance of the blends generally, whereas the presence of CaCO3 as a filler only imparts minor influences on the properties and aging resistance of the blends.  相似文献   

5.
The graft copolymerization of 2‐dimethylamino ethylmethacrylate (DMAEMA) onto ethylene propylene diene mononer rubber (EPDM) was carried out in toluene via solution polymerization technique at 70°C, using dibenzoyl peroxide as initiator. The synthesized EPDM rubber grafted with poly[DMAEMA] (EPDM‐g‐PDMAEMA) was characterized with 1H‐NMR spectroscopy, gel permeation chromatography (GPC), differential scanning calorimetry (DSC), and thermal gravimetric analysis (TGA). The EPDM‐g‐PDMAEMA was incorporated into EPDM/butadiene acrylonitrile rubber (EPDM/NBR) blend with different blend ratios, where the homogeneity of such blends was examined with scanning electron microscopy and DSC. The scanning electron micrographs illustrate improvement of the morphology of EPDM/NBR rubber blends as a result of incorporation of EPDM‐g‐PDMAEMA onto that blend. The DSC trace exhibits one glass transition temperature (Tg) for EPDM/NBR blend containing EPDM‐g‐PDMAEMA, indicating improvement of homogeneity. The physico‐mechanical properties after and before accelerated thermal aging of the homogeneous, and inhomogeneous EPDM/NBR vulcanizates with different blend ratios were investigated. The physico‐mechanical properties of all blend vulcanizates were improved after and before accelerated thermal aging, in presence of EPDM‐g‐PDMAEMA. Of all blend ratios under investigation EPDM/NBR (75/25) blend possesses the best physico‐mechanical properties together with the best (least) swelling (%) in brake fluid. Swelling behavior of the rubber blend vulcanizates in motor oil and toluene was also investigated. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

6.
Styrene butadiene rubber (SBR) was modified by the grafting reaction of maleic anhydride (MAH) in the presence of the initiator benzoyl peroxide (BPO). This modified elastomer was then blended with poly(ethylene terephthalate) (PET) bottle waste, and the mechanical and morphological properties of the resulting blends were studied. The amount of grafted MAH was determined by chemical titration. The results revealed that the concentrations of MAH and BPO strongly affected the grafting process. The morphology of the dispersed phase for blends of PET waste and SBR‐g‐MAH was quite different from that of a simple blend of PET waste and SBR. Dynamic mechanical thermal analysis revealed suitable compatibility between PET waste and styrene butadiene rubber‐graft‐maleic anhydride (SBR‐g‐MAH). The enhanced compatibility resulted in better impact properties. The better compatibility was concluded to result from bond formation between the carbonyl group of SBR‐g‐MAH and the hydroxyl or carboxyl end groups of PET. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 102: 1615–1623, 2006  相似文献   

7.
The effects of maleic anhydride modified ethylene–propylene–diene rubber (EPDMMA) and maleic anhydride modified ethylene–vinyl acetate (EVAMA) on the compatibilization of nitrile rubber (NBR)/ethylene–propylene–diene rubber (70:30 w/w) blends vulcanized with a sulfur system were investigated. The presence of EPDMMA and EVAMA resulted in improvements of the tensile properties, whereas no substantial change was detected in the degree of crosslinking. The blend systems were also analyzed with scanning electron microscopy and dynamic mechanical thermal analysis. The presence of EVAMA resulted in a blend with a more homogeneous morphology. The compatibilizing effect of this functional copolymer was also detected with dynamic mechanical analysis. A shift of the glass‐transition temperature of the NBR phase toward lower values was observed. The presence of EPDMMA and EVAMA also increased the thermal stability, as indicated by an improvement in the retention of the mechanical properties after aging in an air‐circulating oven. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 2408–2414, 2003  相似文献   

8.
The effect of functionalized styrene-butadiene rubber (SBR) with glycidyl methacrylate (GMA) monomers, in the presence of styrene comonomers (SBR-g-GMA-co-St) as a compatibilizer on physical-mechanical, morphological, and swelling behavior of SBR/nitrile butadiene rubber (NBR) blends were studied. It was proved that the compatibilizer made through dicumyl peroxide-induced reaction which possessed 1.5 phr GMA in addition to 1.5 phr styrene comonomers showed higher efficiency of grafting. Possible in situ reactions between SBR-g-GMA-co-St and NBR component also were evaluated with an attenuated total reflectance mode of Fourier-transform infrared spectroscopy. SBR/NBR blend containing compatibilizer with a middle value of grafting demonstrated the most reactions between components. Dynamic mechanical thermal analysis results illustrated that the presence of SBR-g-GMA-co-St caused a significant improvement in compatibility of two components. This was verified with the scanning electron microscope pictures in which a smoother surface of the sample was clear. The enhancement in microstructure led to an increase in tensile strength, elongation at break, and storage modulus. Moreover, the increase in the intermolecular cross-links and made interactions considerably affected blends' swelling behavior in both hydrocarbon solvents (carbon tetrachloride and chloroform).  相似文献   

9.
The blending of polymethyltrifluoropropylsilicone‐modified acrylonitrile–butadiene rubber (MNBR) and fluorosilicon rubber (FSR) at 70 : 30 ratio was investigated. The grafting of mercapto‐functionalized polymethyltrifluoropropylsilicone onto acrylonitrile‐butadiene rubber (NBR) by thiol‐ene reaction was carried out with 2,2′‐azobisisobutyronitrile as initiator in a Haake torque rheometer. The rheological properties of NBR grafting obtained at varying dosages of polymethyltrifluoropropylsilicone in a Haake torque rheometer were studied using torque curves. Grafting reaction was confirmed by 1H nuclear magnetic resonance and energy‐dispersive X‐ray spectroscopy. Results of scanning electron microscopy and dynamic mechanical analysis showed better compatibility of MNBR/FSR blend than NBR/FSR reference blend. Meanwhile, the macro‐mechanical properties of the blend significantly improved. The tensile strength and tear strength of MNBR/FSR blend were improved to 14.34 MPa and 44.94 KN/m, respectively, which were 2.92 MPa and 13.03 KN/m higher than those of NBR/FSR reference blend. The low‐temperature brittleness of the blend was improved to ?57°C, an increase of ?6°C compared with that of NBR. These results indicated that MNBR/FSR blend at 70 : 30 ratio had improved compatibility because of the grafting chains that acted as interfacial agents. The low‐temperature resistance of the blend was also enhanced. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42328.  相似文献   

10.
采用分子模拟方法,研究了高聚合度聚氯乙烯(HPVC)/丁腈橡胶(NBR)交联共混物的结构。结果发现,NBR呈分散相分散在连续相HPVC中,分散状态与两相的比例无关;共混物交联后形成了网络结构,致使材料力学性能提高。  相似文献   

11.
Styrene‐b‐(ethylene‐co‐butylene)‐b‐styrene (SEBS) and styrene‐b‐(ethylene‐co‐propylene) (SEP, SEPSEP) block copolymers with different styrene contents and different numbers of blocks in the copolymer chain were functionalized by melt radical grafting with glycidyl methacrylate (GMA) and employed as compatibilizers for PET‐based blends. Binary blends of PET with both functionalized (SEBS‐g‐GMA, SEP‐g‐GMA, SEPSEP‐g‐GMA) and neat (SEBS, SEP, SEPSEP) copolymers (75 : 25 w/w) and ternary blends of PET and PP (75 : 25 w/w) with various amounts (2.5–10 phr) of both modified and unmodified copolymers were prepared in an internal mixer, and their properties were evaluated by SEM, DSC, melt viscosimetry, and tensile and impact tests. The roles of the chemical structure, grafting degree, and concentration of the various copolymers on blend compatibilization was investigated. The blends with the grafted copolymers showed a neat improvement of phase dispersion and interfacial adhesion compared to the blends with nonfunctionalized copolymers. The addition of grafted copolymers resulted in a marked increase in melt viscosity, which was accounted for by the occurrence of chemical reactions between the epoxide groups of GMA and the carboxyl/hydroxyl end groups of PET during melt mixing. Blends with SEPSEP‐g‐GMA and SEBS‐g‐GMA, at concentrations of 5–10 phr, showed a higher compatibilizing effect with enhanced elongation at break and impact resistance. The effectiveness of GMA‐functionalized SEBS was then compared to that of maleic anhydride–grafted SEBS. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 2201–2211, 2005  相似文献   

12.
Polyglycidylmethacrylate grafted butadiene rubber (PGMA‐g‐BR) was synthesized by a graft solution copolymerization technique. The PGMA content was determined through titration against HBr. The PGMA‐g‐BR was blended with styrene butadiene rubber/butadiene acrylonitrile rubber (SBR/NBR) blends with different blend ratios. The SBR/NBR (50/50) blend was selected to examine the compatibility of such blends. Compatibility was examined using scanning electron microscopy (SEM), differential scanning calorimetry (DSC), and viscosity measurements. The scanning electron micrographs illustrate the change of morphology of the SBR/NBR rubber blend as a result of the incorporation of PGMA‐g‐BR onto that blend. The Tgs of SBR and NBR in the blend get closer upon incorporation of PGMA‐g‐BR 10 phr, which indicates improvement in blend homogeneity. The intrinsic viscosity (η) versus blend ratio graph shows a straight‐line relationship, indicating some degree of compatibility. Thermal stability of the compatibilized and uncompatibilized rubber blend vulcanizates was investigated by determination of the physicomechanical properties before and after accelerated thermal aging. Of all the vulcanizates with different blend ratios under investigation, the SBR/NBR (25/75) compatibilized blend possessed the best thermal stability. However, the SBR/NBR (75/25) compatibilized blend possessed the best swelling performance in brake fluid. The effect of various combinations of inorganic fillers on the physicomechanical properties of that blend, before and after accelerated thermal aging, was studied in the presence and absence of PGMA‐g‐BR. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 1559–1567, 2006  相似文献   

13.
A new compatibilized method was used to prepare thermoplastic elastomer (TPE) of nitrile rubber (NBR) and polypropylene (PP) with excellent mechanical properties by dynamic vulcanization. Glycidyl methacrylate (GMA) grafted PP/amino‐compound was used as a compatibilizer. The effects of the curing systems, compatibilizer, PP type, and reprocessing on the mechanical properties of NBR/PP thermoplastic elastomers were investigated in detail. Experimental results showed that the addition of amino‐compound in the compatibilzer can significantly increase the mechanical properties of the NBR/PP thermoplastic elastomer. Compared with other amino‐compounds, diethylenetriamine (DETA) has the best effect. PP with higher molecular weight is more suitable for preparing NBR/PP thermoplastic elastomer with high tensile strength and high elongation at break. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 2862–2866, 2002  相似文献   

14.
In this study, the morphologies of three types of acrylonitrile–butadiene rubber (NBR)/polypropylene (PP) thermoplastic vulcanizates (TPVs) (with an NBR/PP blend ratio of 70/30) were compared. The TPVs were (1) an ultrafine fully vulcanized acrylonitrile–butadiene rubber (UFNBR)/PP TPV made by the mechanical blending of UFNBR with PP, (2) a dynamically vulcanized NBR/PP TPV without the compatibilization of maleic anhydride grafted polypropylene (MP) and amine‐terminated butadiene–acrylonitrile copolymer (ATBN), and (3) a dynamically vulcanized NBR/PP TPVs with the compatibilization of MP and ATBN. The influence of the compatibility therein on the size of the dispersed vulcanized NBR particles and the crystallization behavior of the PP in the TPVs and the resultant properties are also discussed. As indicated by Fourier transform infrared spectroscopy, scanning electron microscopy, differential scanning calorimetry, polarizing microscopy, dynamic mechanical thermal analysis, and rheological and mechanical testing, the compatibility was significantly improved by the reactive compatibilization of MP and ATBN, which led to a uniform and fine morphology. The compatibilization increased the crystallization rate and reduced the size of the spherulites of PP. On the other hand, it was found that the dispersed vulcanized NBR particles lowered the degree of crystallinity. The better the compatibility of the blend was, the lower the degree of crystallinity and the storage modulus were, but the higher the loss factor and the processing viscosity were. All TPVs showed almost the same oil resistance, but the TPV prepared with reactive compatibilization had the best mechanical properties. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

15.
The graft copolymerization of acrylonitrile (AN) onto butadiene rubber (BR) was carried out in toluene at 80°C, using dibenzoyl-peroxide (BPO) as initiator. The synthesized poly acrylonitrile-grafted-butadiene rubber (AN-g-BR) was characterized by N% elemental analysis and Fourier-transform infrared (FT-IR) spectroscopy. Styrene butadiene rubber/acrylonitrile butadiene rubber (SBR/NBR) blends were prepared with different blend ratios in presence and absence of AN-g-BR, where the homogeneity of such blends were examined with intrinsic viscosity (η) measurements, differential scanning calorimetry (DSC), and scanning electron microscopy (SEM). The scanning electron micrographs illustrate disappearance of the macro-scale phase separation of SBR/NBR rubber blend as a result of the incorporation of AN-g-BR into that blend. Viscosity measurements confirm homogeneity of that blend. Differential Scanning Calorimetry traces exhibit shifts in glass transition temperatures (T g's) of SBR and NBR in their blend, indicating some degree of homogeneity. Physico-mechanical properties of the rubber blend vulcanizates with different blend ratios, in presence and absence of AN-g-BR, were investigated before and after accelerated thermal aging. The SBR/NBR (25/75) homogeneous blend possessed the best physico-mechanical properties after thermal aging, together with the best swelling behavior in motor oil. The physico-mechanical properties of SBR/NBR (25/75) filled blend with different types of inorganic fillers during thermal aging were studied.  相似文献   

16.
HDPE熔融接枝GMA/St及其增容HDPE/PET合金性能的研究   总被引:1,自引:0,他引:1  
利用HAAKE流变仪,采用熔融接枝法分别制备了甲基丙烯酸缩水甘油酯(GMA)、GMA/苯乙烯(St)接枝高密度聚乙烯(HDPE),将所得接枝物HDPE-g-GMA和HDPE-g-(GMA-co-St)作为HDPE/PET共混合金的反应性增容剂,研究了其对体系力学性能和热致形状记忆性能等的影响。结果表明:采用GMA/St双组分单体具有较高的接枝率,生成的接枝物对HDPE/聚对苯二甲酸乙二醇酯(PET)共混合金的增容效果较好;提高了体系的力学性能和热致形状记忆性能,且HDPE-g-(GMA-co-St)含量为5~10phr时,合金具有较好的综合性能。  相似文献   

17.
This study demonstrated an approach of compatibilization between polypropylene (PP) and nitrile butadiene rubber (NBR) by using zinc dimethacrylate (ZDMA) as a reactive compatibilizer in the presence of peroxides. The PP/NBR/ZDMA ternary blends with improved mechanical properties were successfully prepared via peroxide dynamic vulcanization. The resultant blends exhibited a significant increase in mixing torque and complex viscosity after incorporation of ZDMA. Morphology studies showed that the addition of ZDMA reduced the size of the crosslinked NBR phase. Transmission electron microscopy (TEM) combined with scanning electron microscopy (SEM) verified that the possible reactions between ZDMA, NBR, and PP increased the interfacial thickness and improved the compatibility between NBR and PP phase. Crystallization behavior analysis indicated that incorporation of ZDMA promoted the nucleation process of PP. Thermal gravimetric analysis (TGA) showed that the maximum degradation temperature was increased by ZDMA. POLYM. ENG. SCI., 54:2321–2331, 2014. © 2013 Society of Plastics Engineers  相似文献   

18.
The effects of dynamic vulcanization and blend ratios on mechanical properties and morphology of thermoplastic elastomeric (TPE) compositions, based on blends of nitrile rubber (NBR) and poly(styrene‐co‐acrylonitrile) (SAN), were studied. The TPE composition prepared by adding a rubber‐curatives masterbatch to softened SAN yields higher mechanical properties than that prepared by adding curatives to the softened plastic–rubber preblend. The blends having a higher rubber–plastic ratio (60 : 40 to 80 : 20) display thermoplastic elastomeric behavior, whereas those having a higher plastic–rubber ratio (50 : 50 to 90 : 10) display the behavior of impact‐resistant plastics. DSC studies revealed that NBR and SAN are thermodynamically immiscible. SEM studies of the thermoplastic elastomeric compositions show that SAN forms the matrix in which fine particles of NBR form the dispersed phase. It was further confirmed by dynamic mechanical thermal analysis. Dynamic vulcanization causes a decrease in the size of dispersed particles and improvement in mechanical properties. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 88: 1976–1987, 2003  相似文献   

19.
Poly(ethylene‐co‐propylene) (EPR) was functionalized to varying degrees with glycidyl methacrylate (GMA) by melt grafting processes. The EPR‐graft‐GMA elastomers were used to toughen poly(butylene terephthalate) (PBT). Results showed that the grafting degree strongly influenced the morphology and mechanical properties of PBT/EPR‐graft‐GMA blends. Compatibilization reactions between the carboxyl and/or hydroxyl of PBT and epoxy groups of EPR‐graft‐GMA induced smaller dispersed phase sizes and uniform dispersed phase distributions. However, higher degrees of grafting (>1.3) and dispersed phase contents (>10 wt%) led to higher viscosities and severe crosslinking reactions in PBT/EPR‐graft‐GMA blends, resulting in larger dispersed domains of PBT blends. Consistent with the change in morphology, the impact strength of the PBT blends increased with the increase in EPR‐graft‐GMA degrees of grafting for the same dispersion phase content when the degree of grafting was below 1.8. However, PBT/EPR‐graft‐GMA1.8 displayed much lower impact strength in the ductile region than a comparable PBT/EPR‐graft‐GMA1.3 blend (1.3 indicates degree of grafting). Morphology and mechanical results showed that EPR‐graft‐GMA 1.3 was more suitable in improving the toughness of PBT. SEM results showed that the shear yielding properties of the PBT matrix and cavitation of rubber particles were major toughening mechanisms. Copyright © 2006 Society of Chemical Industry  相似文献   

20.
The influence of trans‐polyoctylene rubber (TOR) on the mechanical properties, glass‐transition behavior, and phase morphology of natural rubber (NR)/acrylonitrile–butadiene rubber (NBR) blends was investigated. With an increased TOR level, hardness, tensile modulus, and resilience increased, whereas tensile strength and elongation at break tremendously decreased. According to differential scanning calorimetry and dynamic mechanical analysis, there were two distinct glass‐transition temperatures for a 50/50 NR/NBR blend, indicating the strongly incompatible nature of the blend. When the TOR level was increased, the glass transition of NBR was strongly suppressed. NBR droplets of a few micrometers were uniformly dispersed in the continuous NR phases in the NR/NBR blends. When TOR was added to a 50/50 NR/NBR blend, TOR tended to be located in the NR phase and in some cases was positioned at the interfaces between the NBR and NR phases. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 86: 125–134, 2002  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号