首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 296 毫秒
1.
Mixed matrix membranes (MMMs) embedded with functionalized SAPO‐34 were successfully synthesized and characterized. Two different types of organic amino cation, namely ethylenediamine (EDA) and hexylamine (HA), were used to functionalize SAPO‐34 particles prior to MMM synthesis. In this work, the effects of different functionalizing agents on the membrane morphology, pore size, and CO2/CH4 gas separation properties were investigated. Surface modification of SAPO‐34 was confirmed via X‐ray photoemission spectroscopy (XPS) where the presence of nitrogen atom was observed for the samples functionalized with amino cations. The dispersion of EDA‐functionalized SAPO‐34 particles was found to have better polymer/filler interface morphology as shown by field emission scanning electron microscopy (FESEM) analysis. The gas separation performance revealed that PES containing EDA‐functionalized SAPO‐34 exhibited better CO2/CH4 separation performance as compared to the MMMs containing HA‐functionalized SAPO‐34. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43387.  相似文献   

2.
Modified ultra-porous ZIF-8 particles were used to prepare novel ZIF-8/Pebax 1657 mixed matrix membranes (MMMs) on PES support for separation of CO2 from CH4 using spin coating method. TEM and SEM were used to characterize modified ZIF-8 particles. SEM was also used to investigate the morphology of synthesized MMMs. The MMMs with thinner selective layer showed higher CO2 permeability and lower CO2/CH4 selectivity in permeation tests compared to MMMs with thicker selective layer. The plasticization was recognized as the main reason for rise in CO2 permeability and drop in CO2/CH4 selectivity of thinner MMMs. The gas sorption results showed that the high permeability of CO2 in MMMs is mainly due to the high solubility of this gas in MMMs, leading to high CO2/CH4 solubility selectivity for MMMs. The fractional free volume and void volume fraction of MMMs increased as the thickness of membrane decreased. Applying higher mixed feed pressures and permeation tests temperatures resulted in increase in CO2 permeability and decrease in CO2/CH4 selectivity. At highest testing temperature (60 °C), the CO2 permeability of synthesized MMMs with thinner selective layer remarkably increased.  相似文献   

3.
Mixed matrix membranes (MMMs) were prepared by solvent evaporation method using Pebax-1074 polymer as matrix and inorganic zeolite SAPO-23 as dopant. The morphology, surface functional groups, microstructure, thermal stability, and separation performance of MMMs were analyzed by scanning electron microscopy, Fourier transform infrared spectroscopy, X-ray diffraction, thermogravimetric analysis, and gas permeation, respectively. The effects of dopant loading amount, permeation temperature, and permeation pressure on the structure and properties of MMMs were investigated. The results showed that the introduction of SAPO zeolite reduced the crystallinity of the MMMs and improved the CO2/N2 selectivity. Under the conditions of 30°C and 0.15 MPa, the MMMs prepared by incorporating with 5% SAPO zeolite in content exhibited the highest CO2/N2 selectivity of 72.0 together with the CO2 permeability of 98.2 Barrer.  相似文献   

4.
Polyether‐block‐amide (Pebax)/graphene oxide (GO) mixed‐matrix membranes (MMMs) were prepared with a solution casting method, and their gas‐separation performance and mechanical properties were investigated. Compared with the pristine Pebax membrane, the crystallinity of the Pebax/GO MMMs showed a little increase. The incorporation of GO induced an increase in the elastic modulus, whereas the strain at break and tensile strength decreased. The apparent activation energies (Ep) of CO2, N2, H2, and CH4 permeation through the Pebax/GO MMMs increased because of the greater difficulty of polymer chain rotation. The Ep value of CO2 changed from 16.5 kJ/mol of the pristine Pebax to 23.7 kJ/mol of the Pebax/GO MMMs with 3.85 vol % GO. Because of the impermeable nature of GO, the gas permeabilities of the Pebax/GO MMMs decreased remarkably with increasing GO content, in particular for the larger gases. The CO2 permeability of the Pebax/GO MMMs with 3.85 vol % GO decreased by about 70% of that of the pristine Pebax membrane. Rather than the Maxwell model, the permeation properties of the Pebax/GO MMMs could be described successfully with the Lape model, which considered the influence of the geometrical shape and arrangement pattern of GO on the gas transport. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42624.  相似文献   

5.
In theory, the combination of inorganic materials and polymers may provide a synergistic performance for mixed‐matrix membranes (MMMs); however, the filler dispersion into the MMMs is a crucial technical parameter for obtaining compelling MMMs. The effect of the filler distribution on the gas separation performance of the MMMs based on Matrimid®‐PEG 200 and ZIF‐8 nanoparticles is demonstrated. The MMMs were prepared by two different membrane preparation procedures, namely, the traditional method and non‐dried metal‐organic framework (MOF) method. In CO2/CH4 binary mixtures, the MMMs were tested under fixed conditions and characterized by various methods. Finally, regardless of the MMM preparation procedure, the incorporation of 30 wt % ZIF‐8 nanoparticles allowed to increase the CO2 permeability in MMMs. The ZIF‐8 dispersion influenced significantly the separation factor.  相似文献   

6.
In this work, polybenzimidazole (PBI)-based mixed matrix membranes (MMMs) with natural zeolite were prepared and their transport properties for binary (N2/CH4) and ternary (CO2/N2/CH4) mixed-gas separation were studied. The MMMs, were prepared with PBI as polymeric matrix and Mexican natural zeolite clinoptilolite enriched with cations of Ca2+ as filler. The thermal properties analysis of the PBI and MMMs studied by differential scanning calorimetry (DSC) and thermogravimetric analysis (TGA) indicates that the MMMs membranes have Tg higher than 350°C and decomposition temperatures above 600°C compared with the pristine membranes. PBI membrane and MMMs were analyzed by X-Ray Diffraction (XRD) and the diffraction patterns showed the zeolite signals combine with the amorphous dome from the polymeric matrix. In addition, the perm-selectivity properties of the polymeric membranes and MMMs were tested with binary (N2/CH4; 10/90 mol%) and ternary (CO2/N2/CH4; 5/10/85 mol%) gas mixtures at different pressure rates (50, 150 and 300 psi). The perm-selectivity properties of the MMMs membranes show an improvement in their values about 30% higher compared to the PBI polymeric membranes, favoring the permeation of CO2 and N2.  相似文献   

7.
Poor adhesion between hydrophobic polymers and hydrophilic inorganic fillers is a challenge that encumbers a high separation performance of mixed matrix membrane (MMM). In this study, Titanium(IV) oxide (TiO2) nanoparticles were functionalized using ethylenediamine (EDA) before embedment in poly(ether sulfone) (PES) polymer matrix. MMMs were synthesized through dry phase inversion technique. Membranes morphology and nanoparticles dispersion was drastically enhanced posterior amine modification indicating an improved adhesion between the polymer and filler particles. Membranes thermal stability was likewise improved as higher degradation temperatures were perceived for PES/EDA–TiO2 MMMs. Gas separation evaluation for pure carbon dioxide (CO2) and methane (CH4) gases revealed a remarkably enhanced separation performance upon amine‐grafting of TiO2 as EDA‐TiO2 MMMs exhibited a higher separation performance as compared to MMMs with pristine TiO2. The highest ideal separation factor achieved was 41.52 with CO2 permeability of 10.11 Barrer at an optimum loading of 5% wt of EDA‐TiO2 which is threefold higher as compared to neat PES membrane and approximately twofold higher than MMMs with pristine TiO2, respectively, at the same filler loading. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 45346.  相似文献   

8.
Poly(N‐vinyl‐γ‐sodium aminobutyrate‐co‐sodium acrylate) (VSA–SA)/polysulfone (PS) composite membranes were prepared for the separation of CO2. VSA–SA contained secondary amines and carboxylate ions that could act as carriers for CO2. At 20°C and 1.06 atm of feed pressure, a VSA–SA/PS composite membrane displayed a pure CO2 permeation rate of 6.12 × 10?6 cm3(STP)/cm2 s cmHg and a CO2/CH4 ideal selectivity of 524.5. In experiments with a mixed gas of 50 vol % CO2 and 50 vol % CH4, at 20°C and 1.04 atm of feed pressure, the CO2 permeation rate was 9.2 × 10?6 cm3 (STP)/cm2 s cmHg, and the selectivity of CO2/CH4 was 46.8. Crosslinkages with metal ions were effective for increasing the selectivity. Both the selectivity of CO2 over CH4 and the CO2 permeation rate had a maximum against the carrier concentration. The high CO2 permeation rate originated from the facilitated transport mechanism, which was confirmed by Fourier transform infrared with attenuated total reflectance techniques. The performance of the membranes prepared in this work had good stability. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 275–282, 2006  相似文献   

9.
Interfacial void‐free mixed‐matrix membranes (MMMs) of polyimide (PI)/zeolite were developed using 13X and Linde type A nano‐zeolites and tested for gas separation purposes. Fabrication of a void‐free polymer‐zeolite interface was verified by the decreasing permeability developed by the MMMs for the examined gases, in comparison to the pure PI membrane. The molecular sieving effect introduced by zeolite 13X improved the CO2/N2 and CO2/CH4 selectivity of the MMMs. Separation tests indicated that the manufactured nanocomposite membrane with 30 % loading of 13X had the highest permselectivity for the gas pairs CO2/CH4 and CO2/N2 at the three examined feed pressures of 4, 8 and 12 atm.  相似文献   

10.
A series of poly(amide‐co‐poly(propylene glycol)) (PA‐PPG) random copolymers with different content of PPG were designed by polycondensation reaction. These random copolymers were blended up to 60% with commercially available Pebax 2533. The blend membranes were characterized by Fourier‐transform infrared (FTIR) spectroscopy, X‐ray diffraction (XRD), scanning electron microscope (SEM). Gas permeation properties of these blend membranes were investigated using five single‐gases (CO2, H2, O2, CH4, and N2) at different temperature of 25–55°C and 1.0 atm. The impacts of content of PA‐PPG with different PPG content and operating temperature on CO2 separation properties of Pebax/PA‐PPG blend membranes were studied. The results showed that CO2 permeability gradually increased with the increasing operating temperature, whereas CO2 permeability gradually decreased with the increase in content of PA‐PPG. CO2/N2 selectivity gradually increased with the increase in content of PA‐PPG. In particular, Pebax/PA‐PPG (50)–60% displayed excellent CO2 and O2 separation properties (PCO2 = 79.7 Barrer and PO2 = 13.6 Barrer, CO2/N= 34.7 and O2/N= 5.9) at 25°C and 1.0 atm. POLYM. ENG. SCI., 59:E14–E23, 2019. © 2018 Society of Plastics Engineers  相似文献   

11.
In this study, self‐synthesized copper(I) oxide (Cu2O) nanoparticles were incorporated in poly(ether sulfone) (PES) mixed‐matrix membranes (MMMs) through the phase‐inversion method. A cubic arrangement and crystallite size of 28 nm was identified by transmission electron microscopy and X‐ray diffraction (XRD) for the as‐synthesized Cu2O particles. The pristine PES membrane had a higher contact angle value of 88.50°, which was significantly reduced up to 50.10° for 1.5 wt % PES/Cu2O MMMs. Moreover, XRD analysis of the Cu2O‐incorporated PES membrane exhibited a new diffraction pattern at 36.46°. This ensured that the Cu2O nanoparticles were distributed well in the PES matrix. Interestingly, the water permeability progressively improved up to 66.72 × 10?9 m s?1 kPa?1 for 1.5 wt % PES/Cu2O MMMs. Furthermore, the membrane performances were also evaluated with different feed solutions: (1) bovine serum albumin, (2) humic acid, and (3) oil–water. The enhanced rejection and lower flux reduction percentage were observed for hybrid membranes. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43873.  相似文献   

12.
Mixed‐matrix membranes (MMMs) have shown great advantages but still face some challenges, such as the trade‐off between permeability and selectivity, stability, and the lack of efficient ways to enhance them simultaneously. Here, the fabrication of MMMs with metal‐organic frameworks derived porous carbons (MOF‐PCs) as fillers which exhibit selective‐facilitating CO2 transport passage originating from interactions between fillers and CO2 is showed. With the aid of the developed multicalcination method, MOF‐PCs with variable N‐contents were prepared and incorporated into PPO‐PEG matrix for the first time to prepare MMMs, which show excellent separation performance for CO2/CH4 mixture with a tunable separation performance by combining different N‐contents and surface areas of MOF‐PCs. Moreover, the developed MMMs have hydrothermal and chemical stability. This work not only presents a series of MMMs with both good separation properties and stability, it also provides useful information for guiding the fabrication of high performance MMMs for practical application. © 2018 American Institute of Chemical Engineers AIChE J, 64: 3400–3409, 2018  相似文献   

13.
Poly(l ‐lactic acid) (PLLA) ‐ 20% (w/w) and Cu3(BTC)2 metal organic framework (MOF) based mixed matrix membranes (MMMs) were fabricated by a vertical corotating twin screw microcompounder followed by an injection molding process. Water vapor, CO2, O2, and selected aroma mass transfer properties of PLLA and PLLA MMMs were evaluated. The CO2/O2 perm‐selectivity of PLLA (αCO2/O2) MMMs increased from 7.6 to 10.3 with the incorporation of 20% Cu3(BTC)2 MOF. Gravimetric permeability studies of trans‐2‐hexenal performed at 23°C and 50% RH indicated that permeability coefficient of PLLA MMMs increased by around 60% as compared to regular PLLA film. However, no changes in mass transfer rates were observed for acetaldehyde. Furthermore, the thermal processing parameters as well as the presence of MOF did not show any significant effect on the molecular weight of the PLLA matrix nor on the crystalline structure of the Cu3(BTC)2 MOF, which was confirmed by both gel permeation chromatography and X‐ray diffraction studies. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42764.  相似文献   

14.
9H‐α‐Carbolines have been prepared via consecutive intermolecular Buchwald–Hartwig reaction and Pd‐catalyzed intramolecular direct arylation from commercially available 2,3‐dichloropyridines and substituted anilines. The combination of a high reaction temperature (180 °C) and the use of DBU were found to be crucial for the intramolecular direct arylation reactions of the 3‐chloro‐N‐phenylpyridin‐2‐amines as no reaction was observed at 120 °C and 180 °C using different inorganic and other organic bases. On the other hand, nitrogen‐methylated pyridine analogues of these substrates {N‐[3‐chloro‐1‐methylpyridin‐2(1H)‐ylidene]anilines} do undergo ring closure at 120 °C, with K3PO4 as base, affording the respective 1‐methyl‐1H‐α‐carbolines in good yields.  相似文献   

15.
A novel copolymer of polybenzimidazoles was prepared by copolymerization of 3,3′‐diaminobenzidine tetrahydrochloride, 3,4‐diaminobenzoic acid and isophthalic acid in polyphosphoric acid at 200 °C. The polymerization could be performed within 90–110 min with the assistance of microwave irradiation. The solubility of the copolymer obtained in N,N‐dimethylacetamide (DMAc) was improved compared with those of poly[2,2′‐(m‐phenylene)‐5,5′‐bibenzimidazole] and poly(2,5‐benzimidazole). Thus copolymer membranes could be readily prepared by dissolving the copolymer powders in DMAc with refluxing under ambient pressure. The decomposition temperature of the copolymer was about 520 °C in air according to thermogravimetric analysis data. The proton conductivity and mechanical strength of the phosphoric acid‐doped copolymer membranes were investigated at elevated temperatures. A conductivity of 0.09 S cm?1 at 180 °C and a tensile stress at break of 5.9 MPa at 120 °C were achieved for the acid‐doped copolymer membranes by doping acids in a 75 wt% H3PO4 solution. Copyright © 2010 Society of Chemical Industry  相似文献   

16.
In this article, three novel polymers based on poly(2,5‐benzimidazole) (ABPBI) were synthesized by introducing propyl, isobutyl or n‐butyl groups to its side chain through an alkyl substitution reaction. FTIR and 13C NMR were applied to confirm the formation of corresponding chemical groups. Their physical properties including crystallinity, thermal stability, mechanical strength, and micro‐morphology were also characterized. Their solubility in common solvents were also tested to see if the modification will bring any improvement. Gas permeation properties of three derivative membranes prepared by a casting and solvent‐evaporation method were tested with pure gases including H2, N2, O2, CH4, and CO2. It has been revealed that gas with a smaller molecular size owned a larger permeability. This means gas permeation in all prepared membranes should be diffusivity selective. Among all three modified ABPBI membranes, isobutyl substitution modified ABPBI (IBABPBI) showed the best selectivity of H2 over other gases such as N2 (~185) and CO2 (~6.3) with a comparable permeability (~9.33 barrer) when tested at 35°C and 3.0 atm. Testing temperature increase facilitated gas permeation for all three membranes obviously; while in term of gas selectivity temperature increase showed diverse alteration because it brought variable impact on gas solubility of different gases. Even so, IBABPBI membrane still owned acceptable selectivity of H2 over N2 (~118) and CO2 (~6.3) with an almost doubled permeability (~17.5 barrer) when tested at 75°C and 3.0 atm. Additional tests showed that running at high pressure did not bring any obvious deterioration to gas separation performance of IBABPBI membrane. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40440.  相似文献   

17.
Ethanediamine‐modified zeolitic imidazolate framework (ZIF)‐8 particles (ZIF‐8‐NH2) is synthesized and incorporated in the poly(vinyl alcohol) (PVA) matrix to fabricate novel PVA/ZIF‐8‐NH2 mixed matrix membranes (MMMs) for pervaporation dehydration of ethanol. The PVA/ZIF‐8‐NH2 MMMs exhibit enhanced membrane homogeneity and separation performance because of the higher hydrophilicity and restricted agglomeration of the particles, as compared to corresponding MMMs loaded with unmodified particles. The effect of ZIF‐8‐NH2 loading in the MMMs is studied and the MMM with a 7.5 wt % ZIF‐8‐NH2 loading shows the best pervaporation performance for ethanol dehydration at 40°C. Various characterization techniques (Fourier transform infrared, scanning electron microscope, contact angle, sorption test, etc.) are used to investigate the MMMs loaded with ZIF‐8 and ZIF‐8‐NH2 particles. The impact of operation conditions on pervaporation performance is also performed. The performance benchmarking shows that the MMMs have superior separation factors and comparable flux to most other PVA hybrid membranes. © 2016 American Institute of Chemical Engineers AIChE J, 62: 1728–1739, 2016  相似文献   

18.
Asymmetric structures were fabricated by depositing Y2O3‐doped SiO2 (Si/Y) membranes onto γ‐Al2O3 supported by tubular α‐Al2O3. The thickness of the Y2O3‐doped SiO2 deposits was approximately 100 nm. The deposits/membranes have micropores with a pore diameter ~ <0.40–0.55 nm. Pore size distribution measurements were conducted directly on the membranes before and after hydrothermal treatment with a nano‐permporometer. The gas permeance properties of the membranes were measured in the temperature range 100°C–500°C. The Y‐doped SiO2 membrane (Si/Y = 3/1) was found to exhibit asymptotically stable permeances of 2.39 × 10?7 mol/m2/s/Pa for He and 6.19 × 10?10 mol/m2/s/Pa for CO2, with a high selectivity of 386 (He/CO2) at 500°C for 20 h in the presence of steam. The Y‐doped silica membranes exhibit very high gas permeances for molecules with smaller kinetic diameters. The apparent activation energies of the H2 permeance at 400°C were 24.2 ± 0.2 and 21.3 ± 0.7 kJ/mol for SiO2 and Si/Y, respectively.  相似文献   

19.
Poly(1‐trimethylsilyl‐1‐propyne) (PTMSP) has been crosslinked using 4,4′‐diazidobenzophenone bisazide to improve its chemical and physical stability over time. Crosslinking PTMSP renders it insoluble in good solvents for the uncrosslinked polymer. Gas permeability and fractional free volume decreased as crosslinker content increased, while gas sorption was unaffected by crosslinking. Therefore, the reduction in permeability upon crosslinking PTMSP was due to decrease in diffusion coefficient. Compared with the pure PTMSP membrane, the permeability of the crosslinked membrane is initially reduced for all gases tested due to the crosslinking. By adding nanoparticles (fumed silica, titanium dioxide), the permeability is again increased; permeability reductions due to crosslinking could be offset by adding nanoparticles to the membranes. Increased selectivity is documented for the gas pairs O2/N2, H2/N2, CO2/N2, CO2/CH and H2/CH4 using crosslinking and addition of nanoparticles. Crosslinking is successful in maintaining the permeability and selectivity of PTMSP membranes and PTMSP/filler nanocomposites over time. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

20.
《分离科学与技术》2012,47(13):2128-2137
Silver-doped methyl-modified silica membranes (Ag/M-SiO2) have been prepared using the sol-gel method by adding AgNO3 solution to a methyl-modified silica sol. The influence of silver-doping on the physical and chemical structures, thermal stability of –CH3 groups, and gas permeation performance for the silica membranes were investigated. The metallic silver results from the reduction of AgNO3 which can be completely transformed after calcined above 200°C. The Si–CH3 vibrational bands disappear completely when the calcination temperature is increased to 600°C, which mineralized when the calcination temperature is further increased to 750°C. The doping of silver nanoparticles has nearly no influence on the chemical structure of the methyl-modified silica materials and the thermal stability of –CH3 groups, but can make the mean pore size, total pore volume, H2 permeability, and H2/CO2 selectivities of the silica membranes increase. When operated at 200°C and a pressure difference of 0.35 MPa, the H2 permeance and H2/CO2 selectivity of Ag/M-SiO2 membrane with the AgNO3/tetraethylorthosilicate molar ratio of 0.08 is 8.99 × 10?6 mol · m?2 · Pa?1 · s?1 and 10.22, respectively. After hydrothermal treatment and regeneration, the Ag/M-SiO2 membranes show a smaller change in gas permeances and H2/CO2 permselectivities than the methyl-modified silica membranes without silver-doping.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号