首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 596 毫秒
1.
The highest effectiveness of detergency for nonionic surfactants is observed in the proximity of the cloud point. This phenomenon is primarily influenced by surfactant molecular structure, such as carbon chain length and type of the hydrophilic components. Target of this investigation is to identify a relationship between the cloud point and the structure of nonionic surfactants based on ethoxylated (CnEm), ethoxylated-propoxylated (CnEmPp) and propoxylated-ethoxylated (CnPpEm) fatty alcohols. Three hundred and fifty nonionic surfactants have been prepared for this purpose. These surfactants differ in the C-chain lengths, C4/C6 to C20/C22, and the amount of ethylene oxide (EO range [n] 2–22 ethoxylation) and propylene oxide (PO range [p] 0–12 propoxylation) moieties. Mapping the differences in the performance allows us to propose a high-accuracy topological model describing the structure influence on the cloud point.  相似文献   

2.
A grid of 30 surfactants varying from C8 to C18 in carbon chain length and from 40 to 80% in ethylene oxide (EO) content were examined to determine the effect of molecular structure on the physical properties (density, melting point, solution viscosity) and performance properties (surface activity, detergency, hard-surface cleaning, foaming, wetting) of linear alcohol ethoxylates. Results show that while physical propeties are influenced primarily by EO content, both carbon chain length and EO content are important to performance. Optimum carbon chain length is also shown to depend strongly on surfactant concentration. Presented at the AOCS meeting in New Orleans in May 1987.  相似文献   

3.
A series of polymeric surfactants has been prepared through the reaction of soy protein with polyethoxylated stearyl ethers of various hydrophilic chain lengths. These surfactants exhibited surface activity, evaluated using surface tension, foaming, and wetting power that was superior to that of traditional surfactants containing only one hydrophobic moiety and one hydrophilic head group. Changing the ethoxylate (EO) group length had a significant effect on the surface activity. Increasing the EO group length decreased the critical micelle concentration (CMC) and increased the surface tension at the CMC (γCMC). The good surface properties of these polysaccharide/protein‐type surfactants suggest that they could be used as emulsifiers to prepare oil‐in‐water emulsions displaying good stability.  相似文献   

4.
The equilibrium surface tension, dynamic surface tension, and interfacial tension (IFT) of fatty alcohol ether sulfonates (CmEnSO) were measured to investigate their adsorption behavior. The effect of NaCl and CaCl2 concentrations on the IFT was also studied. The results showed that the number of EO units has no significant effect on the critical micelle concentration (CMC) and CMC decreases with increasing the length of the hydrophobic group. The surface tension at the CMC increases with the increase of the number of EO units and the length of the hydrophobic group. At dilute surfactant concentration, the adsorption process for CmEnSO is controlled by diffusion; at higher concentration, it becomes a mixed diffusion‐kinetic adsorption mechanism. The IFT between CmEnSO solution and dodecane remains around 10?1 mN/m over a wide range of electrolyte concentrations (NaCl concentration from 25 to 210 g/L, CaCl2 concentration from 0.1 to 10 g/L).  相似文献   

5.
The present paper describes the synthesis and evaluation of surface properties of a novel series of anionic surfactant, namely sodium 3‐(3‐alkyloxy‐3‐oxopropoxy)‐3‐oxopropane‐1‐sulfonate with varying alkyl chain length (C8–C16). Synthesis involves initial formation of the 3‐alkyloxy‐3‐oxopropyl acrylate along with fatty acrylate during the direct esterification of fatty alcohol with acrylic acid in the presence of 0.5 % NaHSO4 at 110 °C followed by sulfonation of the terminal double bond of the 3‐alkyloxy‐3‐oxopropyl acrylate. Synthesized compounds were evaluated for surface and thermodynamic properties such as critical micelle concentration (CMC), surface tension at CMC (γcmc), efficiency of surface adsorption (pC20), surface excess (Γmax), minimum area per molecule at the air–water interface (Amin), free energy of adsorption (?G°ads), free energy of micellization (?G°mic), wetting time, emulsifying properties, foaming power and calcium tolerance. Effect of chain length on CMC follows the classic trend, i.e. decrease in CMC with the increase in alkyl chain length. High pC20 (>3) value indicates higher hydrophobic character of the surfactant. These surfactants showed very poor wetting time and calcium tolerance, but exhibited good emulsion stability and excellent foamability. Foaming power and foam stability of C14‐sulfonate were found to be the best among the studied compounds. Foam stability of C14‐sulfonate was also studied at different concentrations over time and excellent foam stability was obtained at a concentration of 0.075 %. Thus this novel class of surfactant may find applications as foam boosters in combination with other suitable surfactants.  相似文献   

6.
Trimeric-type anionic surfactants (3CntaAm, where n is a hydrocarbon chain length of 8, 10, or 12) with three hydrocarbon chains and three carboxylate headgroups were synthesized from tris(2-aminoethyl)amine, and their properties were investigated by surface tension, electrical conductivity, dynamic and static light-scattering, fluorescence of pyrene, and emulsification power techniques. The critical micelle concentrations (CMC) of 3CntaAm were 0.00092–0.00834 mmol dm−3, and the surface tensions at the CMC were 33.3–39.9 mN m−1. The areas per molecule occupied by 3C10taAm and 3C12taAm were extremely small, showing they were highly compact at the air/water interface. In addition, adsorption or micellization behavior of 3CntaAm was estimated by parameters such as pC 20 (the efficiency of surface adsorption), CMC/C 20 (the ease of adsorption relative to the ease of micellization), and ΔG M o (Gibbs energy of micellization). Dynamic and static light-scattering mesurements of 3CntaAm showed a hydrodynamic radius of 45–61 nm above the CMC and aggregation numbers of 10–82 at the CMC, respectively. The fluorescence intensity ratio of the first to the third band in the emission spectra of pyrene started to lower from far above the CMC for 3C8taAm and 3C10taAm, and below the CMC for 3C12taAm. This suggests that loose micelles or premicellar aggregates are formed in solutions. Mixtures of aqueous solutions of 3CntaAm and toluene formed oil-in-water-type emulsions, and the stabilizing abilities were in the order of 3C8taAm>3C10taAm>3C12taAm. The degree of emulsification of 3C8taAm remained at 69% after 24 h of standing. Thus, 3CntaAm exhibited unique properties superior to monomeric or dimeric surfactants that were significantly influenced by their hydrocarbon chain lengths.  相似文献   

7.
The standard free energy, enthalpy, and entropy changes (ΔG, ΔH, and ΔS, respectively) for the adsorption at the air-water interface of a commercial ethylene oxide (EO) adduct of straight chain nonylphenol from monomer solution at the critical micelle concentration (CMC) have been calculated from surface tension-concentration data at 21C–45C using the Gibbs equation, the standard free energy change equation ΔG=−RT (In interfacial monomer concentration/CMC), and the Gibbs-Helmholtz equation which gave ΔH directly from the slope of the (ΔG/T) vs (1/T) function. The CMC and surface tension at the CMC (γCMC) decreased, and −ΔG and molecular area increased slightly, with increasing temperature. The ΔH and ΔS values were positive, and appear explainable by the postulations applied to micellization. At ambient temperature (28C) an increase in the (EO) mol ratio of straight chain nonylphenol and C13 secondary alcohol ethoxylates resulted in increases of CMC, γCMC, and molecular area, and slight decreases in −ΔG. A comparison of the 9 (EO) mol ratio adducts of C13 straight chain primary and secondary alcohols showed that the CMC and molecular area of the secondary alcohol ethoxylate were larger, and the γCMC and −ΔG smaller, than the corresponding values of the primary alcohol ethoxylate.  相似文献   

8.
The surface properties of 5 extended surfactant C12–14P mE2S solutions in pure water and 0.1 M NaCl were investigated through surface tension and electrical conductivity measurements. The surface properties measured include the critical micelle concentration (CMC), critical surface tension (γcmc), maximum surface excess concentration (Γmax), minimum area occupied per surfactant molecule (Amin), and efficiency in surface tension reduction (pC20). The CMC values of the 5 surfactants decreased with increasing polypropylene oxide number (PON) and were higher than those obtained in 0.1 M NaCl. The Γmax values showed a downward trend whereas the Amin values exhibited an upward trend with increasing PON without NaCl. The Γmax values were higher and the Amin values were lower than those obtained without 0.1 M NaCl. The CMC values increased at elevated temperatures. The CMC values of C12–14P3E2S, C12–14P5E2S, and C12–14P8E2S were similar but were markedly lower than those of C12–14E2S at different temperatures. When PON was less than 12, the log CMC value decreased linearly with increasing PON in the absence of salt, and the relationship between pC20 and PON was linear. But in the presence of 0.1 M NaCl, the log CMC value decreased exponentially with increasing PON.  相似文献   

9.
A series of carboxylic ester‐containing imidazolium‐based zwitterionic surfactants, namely, monoalkyl 2‐(3‐methylimidazolium‐1‐yl) succinate inner salts (CnMimSU, n = 8, 10, 12 and 14), have been synthesized. Their structures were confirmed by 1H NMR, 13C NMR and FTIR. The typical physicochemical properties parameters such as isoelectric point, critical micelle concentration (CMC), surface tension at CMC (γCMC), surface pressure at CMC (ΠCMC), adsorption efficiency (pC20), the maximum surface excess (Γm), the minimum molecular cross‐sectional area (Amin) and the value of CMC/C20 were determined. The effect of the long‐chain length on the important physicochemical properties of CnMimSU was studied. It is found that the surface activity of CnMimSU is enhanced with the long‐chain length increases.  相似文献   

10.
Performance and efficiency of anionic [sodium lauryl ether sulfate (SLES) and sodium α-olefin sulfonate (AOS)] and amphoteric [cocamidopropyl betaine (CAB)] as well as nonionic [cocodiethanol amide (DEA), various ethoxylated alcohols (C12–C15–7EO, C10–7EO and C9–C11–7EO) and lauramine oxide (AO)] surfactants in various dishwashing liquid mixed micelle systems have been studied at different temperatures (17.0, 23.0 and 42.0 °C). The investigated parameters were critical micelle concentration (CMC), surface tension (γ), cleaning performance and, foaming, biodegradability and irritability of anionic (SLES/AOS) and anionic/amphoteric/nonionic (SLES/AOS/CAB/AO) as well as anionic/nonionic (SLES/AOS/DEA/AO, SLES/AOS/C12-C15-7EO/AO, SLES/AOS/C10–7EO/AO and SLES/AOS/C9–C11–7EO/AO) dishwashing surfactant mixtures. In comparison to the starting binary SLES/AOS surfactant mixture, addition of various nonionic surfactants promoted CMC and γ lowering, enhanced cleaning performance and foaming, but did not significantly affect biodegradability and irritability of dishwashing formulations. The anionic/nonionic formulation SLES/AOS/C9–C11–7EO/AO shows both the lowest CMC and γ as well as the best cleaning performance, compared to the other examined dishwashing formulations. However, the results in this study reveal that synergistic behavior of anionic/nonionic SLES/AOS/ethoxylated alcohols/AO formulations significantly improves dishwashing performance and efficiency at both low and regular dishwashing temperatures (17.0 and 42.0 °C) and lead to better application properties.  相似文献   

11.
In order to determine the structure‐performance relationship of nonionic‐zwitterionic hybrid surfactants, N,N‐dimethyl‐N‐dodecyl polyoxyethylene (n) amine oxides (C12EOnAO) with different polyoxyethylene lengths (EOn, n = 1–4) were synthesized. For homologous C12EOnAO, it was observed that the critical micelle concentration (CMC), the maximum surface excess (Γm), CMC/C20, and the critical micelle aggregation number (Nm,c) decreased on going from 1 to 4 in EOn. However, there were concomitant increases in surface tension at the CMC (γCMC), minimum molecular cross‐sectional area (Amin), adsorption efficiency (pC20), and the polarity ([I1/I3]m) based on the locus of solubilization for pyrene. The values of log CMC and Nm,c decreased linearly with EOn lengthening from 1 to 4, although the impact of each EO unit on the CMC of C12EOnAO (n = 1–4) was much smaller than that typically seen for methylene units in the hydrophobic main chains of traditional surfactants. Compared to the structurally related conventional surfactant N,N‐dimethyl‐N‐dodecyl amine oxide (C12AO), C12EOnAO (n = 1–4) have smaller CMC, Amin, and CMC/C20, but larger pC20, Γm, and Nm,c with a higher [I1/I3]m. This may be attributed to the moderately amphiphilic EOn (n = 1–4) between the hydrophobic C12 tail and the hydrophilic AO head group.  相似文献   

12.
A group of four selected non‐ionic surfactants based on carbohydrates, namely octyl d ‐xyloside (C8X), nonyl d ‐xyloside (C9X), decyl d ‐xyloside (C10X) and dodecyl d ‐xyloside (C12X), have been investigated to accomplish a better understanding of their physico‐chemical properties as well as biological activities. The surface‐active properties, such as critical micelle concentration (CMC), emulsion and foam stability, the impact of the compounds on cell surface hydrophobicity and cell membrane permeability together with their toxicity on the selected bacterial strains have been determined as well. The studied group of surfactants showed high surface‐active properties allowing a decrease in the surface tension to values below 25 mN m?1 for dodecyl d ‐xyloside at the CMC. The investigated compounds did not have any toxic influence on two Pseudomonas bacterial strains at concentrations below 25 mg L?1. The studied long‐chain alkyl xylosides influenced both the cell inner membrane permeability and the cell surface hydrophobicity. Furthermore, the alkyl chain length, as well as the surfactant concentration, had a significant impact on the modifications of the cell surface properties. The tested non‐ionic surfactants exhibited strong surface‐active properties accompanied by the significant influence on growth and properties of Pseudomonas bacteria cells.  相似文献   

13.
The aqueous self-assembly behavior of two homologous series of poly(ethylene oxide) (PEO)-containing nonionic surfactants based on a C10-Guerbet hydrophobe is reported. The two families of surfactants, alkyl ethoxylates and alkyl alkoxylates, are commercially available from BASF under the trade name Lutensol® XP-series and XL-series, respectively. The latter incorporate propylene oxide (PO) units in the surfactant chain. Dye solubilization was used to determine the critical micellization concentration (CMC) of each surfactant at 22 and 50 °C. The PO-containing alkyl alkoxylates displayed lower CMC values, which were also more sensitive to temperature. The Gibbs free energy, enthalpy, and entropy of micellization were computed from the CMC data and used to identify the contribution of each surfactant moiety (alkyl chain, PO unit, and PEO block) in controlling the CMC. The micellization properties are compared with compositionally similar surfactants with linear alkyl chains, yielding information about the effects of the Guerbet alkyl chain on micellization. Isothermal titration calorimetry was also used to characterize the CMC and enthalpy of micellization which generally compare well with the dye solubilization results. Cloud point data reveal nonmonotonic relationships for the Lutensol® surfactants with respect to composition, unlike linear alkyl chain surfactants. Finally, dilute solution viscosity measurements performed on some Lutensol® surfactants show a change in the slope, suggesting a structural change that tends to be more pronounced for surfactants with longer PEO blocks. The data presented herein enhance the understanding of surfactant structure–property relationships required for industrial formulation.  相似文献   

14.
The surface properties [effectiveness of surface tension reduction (γCMC) critical micelle concentration (CMC), efficiency of surface tension reduction (pC 20), maximal surface excess concentration (Γmax), minimal area/molecule at the interface (A min), and the (CMC/C 20) ratio] of some well-purified N-alkanoyl-N-methyl glucamines and related polyol-based N-methyl amide-type surfactants, having the structural formula RC(O)N(Me)CH2(CHOH)xCH2OH, where RC(O)=undecanoyl, lauroyl, tridecanoyl, myristoyl, and x=1,3, and 4, were investigated at 25°C in distilled water and 0.1 M NaCl. Water solubility of these compounds does not simply depend on the number of hydroxyl groups in the molecule but is associated with the balance between intermolecular hydrogen bonds and hydrogen bonds formed with water molecules. The fundamental interfacial properties, such as CMC and γCMC and two thermodynamic parameters, standard free energy of adsorption and standard free energy of micellization, were found to be significantly dependent on the hydrophobic acyl chain rather than on the number of CHOH groups in the hydrophilic moieties. By contrast, the practical performance properties were greatly dependent on the nature of the hydrophilic group. As a whole, these surfactants had desirable foaming properties and efficient wetting abilities. Furthermore, synergism in foaming and wetting abilities was observed in a binary mixture of these surfactants with an alkyloxyethylene sulfate.  相似文献   

15.
A new group of anionic surfactants, namely sodium salts of secondary alkanesulfonamidoacetic acid, were synthesized using n-alkanesulfonyl chlorides as starting materials. These surfactants, having the formula: R–SO2–NH–CH2–COONa, with R = C12, C14, C16 and C18, were obtained in a simple way with quantitative yields. Different chain lengths and positional isomers of this new type of surfactants are expected to present differences in surface properties and foamability. The surface properties including critical micelle concentrations and minimal surface tensions γmin were determined for each prepared surfactant using surface tension measurements with a Wilhelmy plate. Surface excess and minimum area per molecule at the air–water interface were determined for different concentrations at 25 and 50 °C using the Gibbs equation. The foaming power was also determined by the Bartsch method, and the results obtained were compared to those of a commercial surfactant, the linear alkylbenzenesulfonate. The stability of the foam formed was also evaluated. As expected, these surfactants exhibit good surface properties and show good foaming power.  相似文献   

16.
The surface properties of binary mixtures of anionic sodium methyl ester ??-sulfo alkylate (C m MES) and cationic alkyl trimethylammonium bromide (C n TAB) of different carbon chain length have been studied in the present work. The critical micelle concentration (CMC) that was obtained from the plots of surface tension (??) versus concentration showed that mixed surfactants have CMC values that were about 10 times lower than their single components. The large negative values for both interaction parameters suggest the existence of strong synergism between the oppositely charged surfactant molecules. The effect of hydrocarbon chain length of either surfactant was also compared and results showed that the effect of cationic surfactant chain length dominated that of the anionic surfactants. It was also discovered that certain mixed surfactant combinations behave differently from the expected trend.  相似文献   

17.
The interaction and synergism of some polyoxyethylenated fatty alcohol ether (POE) nonionic surfactants (C12E2, C12E3, C10E5, C10E7, where Cx indicates number of carbon atoms in the chain and Ey indicates number of oxyethylene glycol ethers) with trioxyethylenated dodecyl sulfonate (C12E3S) in mixed monolayer formation at the surface and in mixed micelle formation in aqueous solutions were studied at 25 and 40°C by calculating interaction parameters (βα, βM) from surface tension-concentration data by use of Rosen's equations based on the nonideal solution theory. All the systems investigated adapt reasonably well to the nonideal model, with negative values of βσ and βM (where M means micelle and σ refers to the air-liquid interface) indicating a favorable interaction between the mixed surfactants. Either at a monolayer or in a mixed micelle, the attractive interaction becomes stronger when the alkyl chain in the POE surfactant is longer, i.e., when the POE becomes more hydrophobic. The interaction increases in the order C10E7<C10E5<C12E3, C12E2. For the two C10E n (n= 5,7)/C12E3S systems, as temperature increases from 25 to 40°C, the interaction increases in a mixed micelle, but it decreases in a mixed monolayer. Synergism in mixed micelle formation exists for C12E3S/C10E n mixtures when X1 M , the mole fraction of POE in a mixed micelle, is ≈0.4–0.8, whereas synergism does not occur in the systems of C12E3S/C12E m due to the large difference between CMC1 and CMC2, i.e., large |In(C 1 M /C 2 M )| value (where CMC=critical micelle concentration). The degree of synergism in mixed micelle formation is temperature independent and is 0.23, 0.18, and close to zero for C10E5/C12E3S, C10E7/C12E3S, and C12E m (m=2,3)/C12E3S systems, respectively. Synergism in surface tension reduction effectiveness occurs in C12E3S/C12E2 and C12E3S/C12E3 systems. The mole fractions of POE in the solution phase are 0.302 and 0.333 for the two mixtures at the point of maximum synergism.  相似文献   

18.
The interfacial tensions (IFT) of four low molecular weight groups of ethoxylated octylphenol-, dodecylphenol-, tetradecylphenol- and hexadecyl-phenol—formaldehyde polymeric surfactants were determined using the spinning drop method. Some noteworthy features of the interfacial behaviour of dilute aqueous solutions of 16 of these compounds and homologous hydrocarbons are discussed. An important feature is that these surfactants behave similarly to monomeric ones in their hydrocarbon scan, that is they have a minimum IFT value against a particular member of a homologous hydrocarbon series. The magnitudes of the tension at minimum (γmin) values obtained in this study are of the order of ‘ultralow’ (10?2-10?3 mNm?1). The nmin values of these polymeric nonionic surfactants decrease with increasing hydrophilicity, that is decrease with the increase of ethylene oxide units condensed per mole of alkylphenol unit in the polymeric surfactants studied. In this case, the downward shift in nmin is smaller and apparently not linearly related to the number of EO units. Increasing the hydrophobicity of these polymeric nonionics, that is increasing the length of the alkyl chain from C8 to C16, resulted in an increase in the nmin values obtained. For each of the investigated groups, the lowest γmin values are obtained with polymeric surfactants having the highest EO content. The optimum low tension performance occurs at the low end of the equivalent alkane carbon number scale (at EACNs below 6). Under the influence of added electrolytes these EACNs were shifted to higher values.  相似文献   

19.
A series of four homologous pure nonionic surfactants, all monoesters of tetra(ethylene glycol), were synthesized. The ester surfactants varied in the degree of substitution on the α-carbon of the acyl chain, from no substitution to 2-methyl, to 2-ethyl, and on to 2,2-dimethyl. All surfactants were based on C8-acids except the 2-methyl-substituted, which was based on a C7-acid. The ester surfactants were characterized by critical micelle concentration (CMC) and cloud point. Base-catalyzed hydrolysis was investigated by using 1H NMR and tensiometry. The surfactants showed a pronounced difference in hydrolytic reactivity; the nonsubstituted surfactant was 90 times more reactive than the disubstituted, and the reactivity of the methyl-substituted surfactant was 14 times more reactive than the ethyl-substituted. Hydrolysis studies above the CMC revealed that the ester bond of the aggregated surfactant is protected from attack by hydroxide ions; thus, only surfactants in monomeric form are being cleaved.  相似文献   

20.
Several equation models were investigated to find the relationship between temperature (T). number of ethylene oxide (EO) units (n) or the hydrophile-lipophile balance (HLB) and the surface and thermodynamic properties of some ethoxylated alkylphenol-formaldehyde polymeric nonionic surfactants. These properties include critical micelle concentration (CMC), free energy of micellization (ΔGmic), surface tension at CMC (7CMC), effectiveness (γCMC) and efficiency (pC20) of surfactant to reduce the surface tension of water. The values of the ratio CMC/C2(π = 20) were also considered. The linear multiple regression technique was employed to determine the parameters of the equations and to choose the best forms with the highest values of R2 and F-ratio which reflect the goodness and the reliability of the fit.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号