首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The surface of an aluminum (Al) electrode was modified with a thin film of nickel hexacyanoruthenate (NiHCR) as a novel electrode material. The modification procedure of Al surface, includes two consecutive procedures: (i) the electroless deposition of metallic nickel on the Al electrode surface from NiCl2 solution, and (ii) the chemical transformation of deposited nickel to nickel hexacyanoruthenate films in solution of 20 mM K3[Ru(CN)6] + 0.5 M KNO3. Cyclic voltammogram of the modified Al electrode showed a well-defined redox reaction due to [NiIIRuIII/II(CN)6]1−/2− system. The effects of different supporting electrolytes and solution pH were studied on the electrochemical characteristics of the modified electrode. The diffusion coefficients of K+ and Na+ cations in the film (D), the transfer coefficient (α), and the charge transfer rate constant at the modifying film/electrode interface (ks), were calculated in the presence of both K+ and Na+ cations. The stability of the modified electrode was investigated under various experimental conditions.  相似文献   

2.
A glassy carbon (GC) electrode surface was modified with a cadmium pentacyanonitrosylferrate (CdPCNF) film as a novel electrode material. The modification procedure of the GC surface includes two consecutive procedures: (i) the electrodeposition of metallic cadmium on the GC electrode surface from a CdCl2 solution and (ii) the chemical transformation of the deposited cadmium to the CdPCNF films in 0.05 M Na2[Fe(CN)5NO] + 0.5 M KNO3 solution. The modified GC electrode showed a well-defined redox couple due to [CdIIFeIII/II(CN)5NO]0/−1 system. The effects of supporting electrolytes and solution pH were studied on the electrochemical behavior of the modified electrode. The diffusion coefficients of alkali-metal cations in the film (D), the transfer coefficient (α) and the charge transfer rate constant at the modifying film | electrode interface (ks), were calculated in the presence of various alkali-metal cations. The stability of the modified electrode was investigated under various experimental conditions.  相似文献   

3.
The electrosynthesis of polyaniline on the bare aluminum and pre-treated aluminum surface achieved in aqueous H2PtCl6 solution saturated with NaF for few seconds is described. The effect of some factors such as pre-treatment time, aniline and sulfuric acid concentrations on the electropolymerization process was investigated and optimum conditions were obtained. The stability of polyaniline film on the pre-treated aluminum electrode (Al-Pt) was studied as function of the potential imposed on the electrode. For applied electrode potentials of 0.1-0.7 V, the first-order degradation rate constant, k, of polyaniline film varies between 1 × 10−6 and 2 × 10−5 s−1, and a relatively low slope (i.e. 2.1) was obtained for the plot of log k versus E. The coatings were characterized by scanning electron microscopy (SEM), and cyclic voltammetric behavior of the polyaniline-deposited Al electrode (Al/PANI) and polyaniline-deposited Al-Pt electrode (Al-Pt/PANI) in 0.1 H2SO4 solutions is described. The electrocatalytic activity of the Al-Pt/PANI electrode against para-benzoquinone/hydroquinone (Q/H2Q) and Fe(CN)63−/Fe(CN)64− redox systems was investigated and the obtained results are compared with those obtained on Al/PANI and bulk Pt electrodes.  相似文献   

4.
Fang Ye  Lishi Wang 《Electrochimica acta》2008,53(12):4156-4160
5-[o-(4-Bromine amyloxy)phenyl]-10,15,20-triphenylporphrin (o-BrPETPP) was electropolymerized on a glassy carbon electrode (GCE), and the electrocatalytic properties of the prepared film electrode response to dopamine (DA) oxidation were investigated. A stable o-BrPETPP film was formed on the GCE under ultrasonic irradiation through a potentiodynamic process in 0.1 M H2SO4 between −1.1 V and 2.2 V versus a saturated calomel electrode (SCE) at a scan rate of 0.1 V s−1. The film electrode showed high selectivity for DA in the presence of ascorbic acid (AA) and uric acid (UA), and a 6-fold greater sensitivity to DA than that of the bare GCE. In the 0.05 mol L−1 phosphate buffer (pH 6.0), there was a linear relationship between the oxidation current and the concentration of DA solution in the range of 5 × 10−7 mol L−1 to 3 × 10−5 mol L−1. The electrode had a detection limit of 6.0 × 10−8 mol L−1(S/N = 3) when the differential pulse voltammetric (DPV) method was used. In addition, the charge transfer rate constant k = 0.0703 cm s−1, the transfer coefficient α = 0.709, the electron number involved in the rate determining step nα = 0.952, and the diffusion coefficient Do = 3.54  10−5 cm2 s−1 were determined. The o-BrPETPP film electrode provides high stability, sensitivity, and selectivity for DA oxidation.  相似文献   

5.
A glassy carbon (GC) electrode was modified with cobalt pentacyanonitrosylferrate (CoPCNF) film. Cyclic voltammetry (CV) of the CoPCNF onto the GC (CoPCNF/GC) shows a redox couple (FeIII/FeII) with a standard potential (E0′) of 580 mV. The current ratio Ipa/Ipc remains almost 1, and a peak separation (ΔEp) of 106 mV is observed in 0.5 M KNO3 as the supporting electrolyte. Anodic peak currents were found to be linearly proportional to the scan rate between 10 and 200 mV s−1, indicating an adsorption-controlled process. The redox couple of the CoPCNF film presents an electrocatalytic response to sulfide in aqueous solution. The analytical curve was linear in the concentration range of 7.5 × 10−5 to 7.7 × 10−4 M with a detection limit of 4.6 × 10−5 M for sulfide ions in 0.5 M KNO3 solution.  相似文献   

6.
The catalytic oxidation of dopamine (DA) at a LiTCNE (lithium tetracyanoethylenide) film modified electrode is studied by electrochemical approaches. The immobilization of LiTCNE was performed by a polymer (poly-l-lysine) to prepare this modified electrode and its application for dopamine (DA) determination is described in detail. The modified electrode showed a high activity for the electrooxidation of dopamine (DA) at Ep = 0.20 V versus SCE. The modified electrode presented a wide linear response range for DA from 0.01 up to 10 μmol l−1 by differential pulse voltammetry (DPV) with a detection limit of 0.5 nmol l−1. The repeatability of the proposed sensor evaluated in term of relative standard deviation was 3.2% for n = 10. The sensor was applied for the determination of dopamine in pharmaceutical formulations and the average recovery for these samples was 101.9 (±0.1)%.  相似文献   

7.
The electrochemistry of dopamine (DA) was investigated by cyclic voltammetry (CV) and differential pulse voltammograms (DPV) at a glassy carbon electrode modified by the hybridization adducts of Fc-SWNTs. The electro-oxidation of DA could be catalyzed by Fc/Fc+ couple as a mediator and had a higher electrochemical response due to the unique carbon surface of carbon nanotubes. The anodic peaks of DA, ascorbic acid (AA) and uric acid (UA) in their mixture can be well separated by the prepared electrode. Under optimum conditions linear calibration graphs were obtained over the DA concentration range 5.0 × 10−6 to 3.0 × 10−5 M with a correlation coefficient of 0.9998 and a detection limit of 5.0 × 10−8 M based on the equation Cm = 3sb1/m. The modified electrode has been successfully applied for the assay of DA in human blood serum. This work provides a simple and easy approach to selectively detect DA in the presence of AA and UA.  相似文献   

8.
The direct electrochemistry of hemoglobin (Hb) on multi-walled carbon nanotubes (MWCNTs) modified carbon ionic liquid electrode (CILE) was achieved in this paper. By using a hydrophilic ionic liquid 1-ethyl-3-methylimidazolium tetrafluoroborate (EMIMBF4) as the modifier, a new CILE was fabricated and further modified with MWCNTs to get the MWCNTs/CILE. Hb molecules were immobilized on the surface of MWCNTs/CILE with polyvinyl alcohol (PVA) film by a step-by-step method and the modified electrode was denoted as PVA/Hb/MWCNTs/CILE. UV-vis and FT-IR spectra indicated that Hb remained its native structure in the composite film. Cyclic voltammogram of PVA/Hb/MWCNTs/CILE showed a pair of well-defined and quasi-reversible redox peaks with the formal potential (E0′) of −0.370 V (vs. SCE) in 0.1 mol/L pH 7.0 phosphate buffer solution (PBS), which was the characteristic of the Hb heme FeIII/FeII redox couples. The redox peak currents increased linearly with the scan rate, indicating the direct electron transfer was a surface-controlled process. The electrochemical parameters of Hb in the film were calculated with the results of the electron transfer coefficient (α) and the apparent heterogeneous electron transfer rate constant (ks) as 0.49 and 1.054 s−1, respectively. The immobilized Hb in the PVA/MWCNTs composite film modified CILE showed excellent electrocatalytic activity to the reduction of trichloroacetic acid (TCA) and hydrogen peroxide. So the proposed electrode showed the potential application in the third generation reagentless biosensor.  相似文献   

9.
The sol-gel technique was used to construct nickel pentacyanonitrosylferrate (NiPCNF) modified composite ceramic carbon electrodes (CCEs). This involves two steps: forming a CCE containing Ni powder and then immersing the electrode into a sodium pentacyanonitrosyl-ferrate solution (electroless deposition). The cyclic voltammograms of the resulting surface modified CCE under optimum conditions show a well-defined redox couple due to the [NiIIFeIII/II(CN)5NO]0/−1 system. The electrochemical properties and stability of the modified electrode were investigated by cyclic voltammetry. The apparent electron transfer rate constant (ks) and transfer coefficient (α) were determined by cyclic voltammetry being about 1.1 s−1 and 0.55, respectively. Sulfite has been chosen as a model to elucidate the electrocatalytic ability of NiPCNF-modified CCE prepared by one- or two-step sol-gel technique. The modified electrode showed excellent electrocatalytic activity toward the SO32− electro oxidation in pH range 3-9 in comparison with CCE modified by homogeneous mixture of graphite powder, Ni(NO3)2 and Na2[Fe(CN)5NO] (one-step sol-gel technique). Sulfite was determined amperometrically at the surface of this modified electrode in pH 7. Under the optimized conditions the calibration curve is linear in the concentration range 2 μM to 2.0 mM. The detection limit (signal-to-noise is 3) and sensitivity are 0.5 μM and 13.5 nA/μM. The modified carbon ceramic electrode containing nickel pentacyanonitrosylferrate shows good repeatability, short response time, t (90%) <2 s, long-term stability (3 months), and it is renewed by simple mechanical polishing and its immersing in Na2[Fe(CN)5NO] solution. The advantages of the SO32− amperometrically detector based on the nickel pentacyanonitrosylferrate-doped CCE is high sensitivity, inherent stability at wide pH range, excellent catalytic activity and less expense and simplicity of preparation. This sensor can be used as amperometric detector in chromatographic instruments.  相似文献   

10.
Stable Nafion-Au colloids were immobilized on a glassy carbon electrode (GCE) for detection of β-agonist clenbuterol by electroanalysis. The Au colloids were prepared by a one-step electrodeposition onto GCE, with obvious electrocatalytic activity present. The negatively charged Nafion film was an efficient barrier to negatively charged interfering compounds, resulting in accumulation of positively charged clenbuterol at the Nafion film. The electrochemical characters of the electrode during various modified steps in a redox probe system of K4[Fe(CN)6]/K3[Fe(CN)6] were confirmed by cyclic voltammetry (CV) and AC-impedance. In Britton-Robinson (B-R) buffer solution (pH = 2.0) and the potential range of −0.2 to 1.2 V, the Nafion-Au colloid modified electrode, compared to a bare GCE, exhibits obvious electrocatalytic activity towards the redox of clenbuterol by greatly enhancing the peak current with a linear calibration curve from 8.0 × 10−7 to 1.0 × 10−5 mol/L and a detection limit of (1.0 × 10−7 mol/L) (R = 0.996). The modified electrode shows high sensitivity, selectivity and reproducibility. The recovery for detecting clenbuterol (∼10−6 mol/L) in human serum is up to 98.19%.  相似文献   

11.
Multinegatively charged metal complex, hexacyanoferrate ([Fe(CN)6]4−), was electrostatically trapped in the cationic polymer film of N,N-dimethylaniline (PDMA) which was electrochemically deposited on the boron-doped diamond (BDD) electrode by controlled-potential electro-oxidation of the monomer. This ferrocyanide-trapped PDMA film was used to catalyze the oxidation of ascorbic acid (AA). Increase in the oxidation current response with a negative shift of the anodic peak potential was observed at the cationic PDMA film-coated BDD (PDMA|BDD) electrode, compared with that at the bare BDD electrode. A more drastic enhancement in the oxidation peak current as well as more negative shift of oxidation potential was found at the ferrocyanide-trapped PDMA film-coated BDD ([Fe(CN)6]3−/4−|PDMA|BDD) electrode. This [Fe(CN)6]3−/4−|PDMA|BDD electrode can be used as an amperometric sensor of AA. Ferrocyanide, electrostatically trapped in the polymer film shows more electrocatalytic activity than that coordinatively attached to the polymer film or dissolved in the solution phase. The electrocatalytic current depends on the surface coverage of ferricyanide, ΓFe, within the polymer film. Diffusion coefficient (D) of AA in the solution was estimated by rotating disk electrode voltammetry: D = (5.8 ± 0.3) × 10−6 cm2 s−1. The second-order rate constant for the catalytic oxidation of AA by ferricyanide was also estimated to be 9.0 × 104 M−1 s−1. In the hydrodynamic amperometry using the [Fe(CN)6]3−/4−|PDMA|BDD electrode, a successive addition of 1 μM AA caused the successive increase in current response with equal amplitude and the sensitivity was calculated as 0.233 μA cm−2 μM−1.  相似文献   

12.
The electrocatalytic oxidation of deoxyguanosine on a ruthenium hexacyanoferrate (RuOHCF) glassy carbon (GC) modified electrode was investigated in acid medium by using rotating disc electrode (RDE) voltammetry. Chronoamperometric experiments allowed information on the charge transport rate through the RuOHCF film and at a very short time window a diffusion-like behavior was observed with a Dct value of 2.7 × 10−11 cm2 s−1 for a film with Γ = 4.47 × 10−9 mol cm−2. The influence of systematic variation of rotation rate, film thickness and the electrode potential indicates that the rate of cross-chemical reaction between Ru(IV) centers immobilized into the film and deoxyguanosine controls the overall electrodic process and the value of the rate constant was found to be 3.2 × 106 mol−1 L1 s−1. The relatively high rate constant of the cross-reaction, the facile penetration of the substrate through the film and the fast transport of electrons suggest that the electrocatalytic process occurs throughout the film layer.  相似文献   

13.
An electrochemical biosensor was constructed based on the immobilization of myoglobin (Mb) in a composite film of Nafion and hydrophobic ionic liquid 1-butyl-3-methylimidazolium hexafluorophosphate (BMIMPF6) for a modified carbon paste electrode (CPE). Direct electrochemistry of Mb in the Nafion-BMIMPF6/CPE was achieved, confirmed by the appearance of a pair of well-defined redox peaks. The results indicate that Nafion-BMIMPF6 composite film provided a suitable microenvironment to realize direct electron transfer between Mb and the electrode. The cathodic and anodic peak potentials were located at −0.351 V and −0.263 V (vs. SCE), with the apparent formal potential (Ep) of −0.307 V, which was characteristic of Mb Fe(III)/Fe(II) redox couples. The electrochemical behavior of Mb in the composite film was a surface-controlled quasi-reversible electrode process with one electron transfer and one proton transportation when the scan rate was smaller than 200 mV/s. Mb-modified electrode showed excellent electrocatalytic activity towards the reduction of trichloroacetic acid (TCA) in a linear concentration range from 2.0 × 10−4 mol/L to 1.1 × 10−2 mol/L and with a detection limit of 1.6 × 10−5 mol/L (3σ). The proposed method would be valuable for the construction of a third-generation biosensor with cheap reagents and a simple procedure.  相似文献   

14.
Novel inorganic film modified electrodes have been prepared by chemical deposition of a thin palladium pentacyanonitrosylferrate (PdPCNF) film on the surface of aluminum substrate. The modification process including the electroless deposition of metallic palladium on the aluminum electrode surface from PdCl2+25% ammonia solution and chemical derivatization of deposited palladium to the PdPCNF film in 0.1 M Na2[Fe(CN)5NO]+0.5 M KNO3+HNO3 solution (pH 1.5-2.5), are described. The aluminum-based modified electrodes exhibit, one pair of well-defined voltammetric peaks which correspond to the Fe(III)/Fe(II) transition in complex structure. The effect of pH, ammonium, alkali metal and alkaline earth metal cations of supporting electrolyte on the electrochemical characteristics of the modified electrode was studied in detail. Diffusion coefficients of hydrated ammonium and alkali metal cations in the film (D), transfer coefficient (α) and transfer rate constant for electron (ks), were determined. The high stability of this modified electrode makes it attractive in practical application.  相似文献   

15.
Poly(o-aminophenol) (POAP) was formed by successive cyclic voltammetry in monomer solution in the presence of sodium dodecyl sulfate (SDS) on the surface of a carbon paste electrode. The electrochemical behavior of the SDS-POAP carbon paste electrode has been investigated by cyclic voltammetry in 0.5 M HClO4 and 5 mM K4[Fe(CN)6]/0.1 M KCl solutions as the supporting electrolyte and model system, respectively. Ni(II) ions were incorporated into the electrode by immersion of the polymeric modified electrode having amine groups in 0.1 M Ni(II) ion solution. Cyclic voltammetric and chronoamperometric experiments were used for the electrochemical study of this modified electrode. A good redox behavior of the Ni(III)/Ni(II) couple at the surface of electrode can be observed. The electrocatalytic oxidations of methanol and ethylene glycol (EG) at the surface of the Ni/SDS-POAP electrode were studied in a 0.1 M NaOH solution. Compared to bare carbon paste and POAP-modified carbon paste electrodes, the SDS-POAP electrode significantly enhanced the catalytic efficiency of Ni ions for methanol oxidation. Finally, using a chronoamperometric method, the catalytic rate constants (k) for methanol and ethylene glycol were found to be 2.04 × 105 and 1.05 × 107 cm3 mol−1 s−1, respectively.  相似文献   

16.
Nano-γ-Al2O3 is dispersed onto the glass carbon electrode (GCE) by polishing. This nanostructured modified GCE exhibits a great enhancement to the redox responses of 3-nitrobenzaldehyde thiosemicarbazone (3-NBT). In comparison with bare GCE, 3-NBT gives a more sensitive voltammetric response because of the nanoparticle’s unique properties. The lowest detectable concentration (3σ) of 3-NBT is estimated to be 1.18 × 10−6 M (accumulation for 4 min). The linear relationship between peak current and concentration of 3-NBT holds in the range 1.0 × 10−5 M to 1.0 × 10−4 M (r = 0.9981). The electrochemical properties of 3-NBT on this modified electrode have been investigated with various electrochemical methods. The results indicate that the transference of one electron and one proton involves electrode radical reaction processes I and II, respectively. The coverage value (Γ) of 1.62 × 10−9 mol cm−2 was calculated and the electrochemical parameters, diffusion coefficient D (2.54 × 10−3 cm2 s−1, 2.03 × 10−3 cm2 s−1) and reaction rate constant ks (5.9573 s−1, 7.15 × 10−2 cm s−1) were obtained for quasi-reversible system I and irreversible system II, respectively.  相似文献   

17.
Functionalized polypyrrole film were prepared by incorporation of (Fe(CN)6)4− as doping anion, during the electropolymerization of pyrrole onto a carbon paste electrode (CPE) in aqueous solution by using potentiostatic method. The electrochemical behavior of the (Fe(CN)6)3−/(Fe(CN)6)4− redox couple in polypyrrole was studied by cyclic voltammetry and double step potential chronoamperometry methods. In this study, an obvious surface redox reaction was observed and dependence of this reaction on the solution pH was illustrated. The electrocatalytic ability of polypyrrole/ferrocyanide films modified carbon paste electrode (Ppy/FCNMCPEs) was demonstrated by oxidation of ascorbic acid. It has been found that under optimum condition (pH 7.00), the oxidation of ascorbic acid at the surface of such electrode occurs at a potential about 540 mV less positive than unmodified carbon paste electrode. The kinetic parameters such as electron transfer coefficient, α and catalytic reaction rate constant, kh′, were also determined by using various electrochemical approaches.The catalytic oxidation peak current showed a linear dependent on the ascorbic acid concentration and a linear calibration curve was obtained in the range of 4.5×10−4 to 9.62×10−3 M of ascorbic acid with a correlation coefficient of 0.9999. The detection limit (2σ) was determined as 5.82×10−5 M.  相似文献   

18.
Functionalized polypyrrole film were prepared by incorporation of [Fe(CN)6]4− as a doping anion, during the electropolymerization of pyrrole onto a carbon paste electrode in an aqueous solution by potentiostatic method. The electrochemical behavior of dopamine (DA) and ascorbic acid (AA) in one solution was studied at the surface of bare and modified carbon paste electrodes using cyclic voltammetry (CV), linear sweep voltammetry (LSV) and differntial pulse voltammetry (DPV) methods. The well separated anodic peaks for oxidation of DA and AA were observed at the surface of the modified carbon paste electrode under optimum condition (pH 6.00), which can be used for determination of these species simultaneously in mixture by LSV and DPV methods. The linear analytical curves were obtained in the ranges of 0.10-1.00 mM and 0.10-0.95 mM for ascorbic acid and 0.10-1.20 mM and 0.20-0.95 mM for dopamine concentrations using LSV and DPV methods, respectively. The detection limits (2σ) were determined as 3.38 × 10−5 M and 1.34 × 10−5 M of ascorbic acid and 3.86 × 10−5 M and 1.51 × 10−5 M of dopamine by CV and DPV methods.  相似文献   

19.
The sol-gel technique was used to fabricate nickel powder carbon composite electrode (CCE). The nickel powder successfully used to deposit NiOx thin film on conductive carbon ceramic electrode for large surface area catalytic application. Repetitive cycling in potential range −0.2 to 1.0 V was used to form of a thin nickel oxide film on the surface carbon composite electrode. The thin film exhibits an excellent electro-catalytic activity for oxidation of SO32−, S2O42−, S2O32−, S4O62− and S2− in alkaline pH range 10-14. Optimum pH values for detection of all sulfur derivatives is 13 and catalytic rate constants are in range 2.4 × 103-8.9 × 103 M−1 s−1. The hydrodynamic amperometry at rotating modified CCE at constant potential versus reference electrode was used for detection of sulfur derivatives. Under optimized conditions the calibration plots are linear in the concentration range 10 μM-15 mM and detection limit 1.2-34 μM and 0.53-7.58 nA/μM (sensitivity) for electrode surface area 0.0314 cm2. The nickel powder doped modified carbon ceramic electrode shows good reproducibility, a short response time (2.0 s), remarkable long term stability, less expense, simplicity of preparation, good chemical and mechanical stability, and especially good surface renewability by simple mechanical polishing and repetitive potential cycling. This sensor can be used into the design of a simple and cheap chromatographic amperometry detector for analysis of sulfur derivatives.  相似文献   

20.
Hydrolytic lignin (HL) was adsorbed from an aqueous/organic solution on bare and iodine-modified gold electrode. Subsequent electrooxidation of the lignin adsorbate generated redox-active quinone-based groups in the biopolymer structure, exhibiting high reversibility during potential cycling and fast electron transfer kinetics. The presence of the chemisorbed iodine layer on the supporting gold electrode had a pronounced effect on the electrochemical properties of the final modified electrode in terms of double-layer capacitance (Cdl) and the observed surface coverage (Γobs). The high electrochemical activity in connection with low Cdl made it possible to apply the Au|I(ads)|HL electrode as a fast-responding and sensitive electrochemical sensor for NADH. When tested in the amperometric mode at a constant potential of +0.4 V vs. Ag/AgCl, the modified electrode showed a linear current-concentration response over the range of 5-120 μM with a sensitivity of 2.39 nA μM−1 cm−2 and a detection limit of 1.0 μM (S/N = 3). Kinetic studies using the rotating disk electrode revealed that the mediated oxidation of NADH on the Au|I(ads)|HL electrode was limited by the second order reaction of the analyte molecules with o-quinone moieties with a rate constant of ca. 4.7 × 102 M−1 s−1 (CNADH → 0). The modified electrode showed high resistivity against fouling and retained ca. 65% activity after storage in phosphate buffer (pH 7.4) at room temperature for 1 week.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号