首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 317 毫秒
1.
Method for analysis of nanoparticle hemolytic properties in vitro   总被引:1,自引:0,他引:1  
Hemolysis (destruction of red blood cells) in vivo can lead to anemia, jaundice, and other pathological conditions; therefore the hemolytic potential of all intravenously administered pharmaceuticals must be evaluated. Nanotechnology-derived devices and drug carriers are emerging as alternatives to conventional small-molecule drugs, and in vitro evaluation of their biocompatibility with blood components is a necessary part of early preclinical development. The small size and unique physicochemical properties of nanoparticles may cause their interactions with erythrocytes to differ from those observed for conventional pharmaceuticals and may also cause interference with standardized in vitro tests. Separating true hemolytic responses from the false-positive or false-negative results caused by particle interference is important for correct interpretation of these tests. Here we describe validation of an in vitro assay for the analysis of nanoparticle hemolytic properties and discuss observed nanointerferences with the assay. We propose alternative methods to avoid misleading results from nanoparticles and discuss the potential relevance of nanoparticle in vitro hemolytic properties to in vivo systems.  相似文献   

2.
Safety and toxic effects of nanoparticles are still largely unexplored due to the multiple aspects that influence their behaviour toward biological systems. Here, we focus the attention on 12 nm spherical gold nanoparticle coated or not with hyaluronic acid compared to its precursor counterpart salt. Results ranging from the effects of a 10-days exposure in an in vitro model with BALB/c 3T3 fibroblast cells show how 12 nm spherical gold nanoparticles are internalized from 3T3 cells by endo-lysosomal pathway by an indirect measurement technique; and how gold nanoparticles, though not being a severe cytotoxicant, induce DNA damage probably through an indirect mechanism due to oxidative stress. While coating them with hyaluronic acid reduces gold nanoparticles cytotoxicity and slows their cell internalization. These results will be of great interest to medicine, since they indicate that gold nanoparticles (with or without coating) are suitable for therapeutic applications due to their tunable cell uptake and low toxicity.  相似文献   

3.
Internalization and subcellular localization in HeLa cells of gold nanoparticles modified with the SV40 large T antigen were quantified using inductively coupled plasma optical emission spectroscopy (ICP-OES). Internalization was monitored as a function of incubation time, temperature, nanoparticle diameter, and large T surface coverage. Increasing the amount of large T peptides per gold nanoparticle complex, by either increasing the coverage at constant nanoparticle diameter or by increasing the nanoparticle diameter at constant large T coverage, resulted in more cellular internalization. In addition, nuclear fractionation was performed to quantify nuclear localization of these complexes as a function of large T coverage. In contrast to our prior qualitative investigations of nuclear localization by video-enhanced color differential interference contrast microscopy (VEC-DIC), ICP-OES was able to detect nanoparticles inside fractionated cell nuclei. Although increasing the large T coverage was found to afford higher cell internalization and nuclear targeting, quantitative evaluation of cytotoxicity revealed that higher large T coverages also resulted in greater cytotoxicity. The ICP-OES and nuclear fractionation techniques reported here are valuable tools that can add important quantitative information to optical and electron imaging methods such as VEC-DIC and transmission electron microscopy regarding the fate of nanoparticles in cells.  相似文献   

4.
Epidermal growth factor receptor (EGFR) targeted nanoparticle are developed by conjugating a single‐chain anti‐EGFR antibody (ScFvEGFR) to surface functionalized quantum dots (QDs) or magnetic iron oxide (IO) nanoparticles. The results show that ScFvEGFR can be successfully conjugated to the nanoparticles, resulting in compact ScFvEGFR nanoparticles that specifically bind to and are internalized by EGFR‐expressing cancer cells, thereby producing a fluorescent signal or magnetic resonance imaging (MRI) contrast. In vivo tumor targeting and uptake of the nanoparticles in human cancer cells is demonstrated after systemic delivery of ScFvEGFR‐QDs or ScFvEGFR‐IO nanoparticles into an orthotopic pancreatic cancer model. Therefore, ScFvEGFR nanoparticles have potential to be used as a molecular‐targeted in vivo tumor imaging agent. Efficient internalization of ScFvEGFR nanoparticles into tumor cells after systemic delivery suggests that the EGFR‐targeted nanoparticles can also be used for the targeted delivery of therapeutic agents.  相似文献   

5.
The delivery of nanoparticles into cells is important in therapeutic applications and in nanotoxicology. Nanoparticles are generally targeted to receptors on the surfaces of cells and internalized into endosomes by endocytosis, but the kinetics of the process and the way in which cell division redistributes the particles remain unclear. Here we show that the chance of success or failure of nanoparticle uptake and inheritance is random. Statistical analysis of nanoparticle-loaded endosomes indicates that particle capture is described by an over-dispersed Poisson probability distribution that is consistent with heterogeneous adsorption and internalization. Partitioning of nanoparticles in cell division is random and asymmetric, following a binomial distribution with mean probability of 0.52-0.72. These results show that cellular targeting of nanoparticles is inherently imprecise due to the randomness of nature at the molecular scale, and the statistical framework offers a way to predict nanoparticle dosage for therapy and for the study of nanotoxins.  相似文献   

6.
Molecular therapy using a small interfering RNA (siRNA) has shown promise in the development of novel therapeutics. Various formulations have been used for in vivo delivery of siRNAs. However, the stability of short double‐stranded RNA molecules in the blood and efficiency of siRNA delivery into target organs or tissues following systemic administration have been the major issues that limit applications of siRNA in human patients. In this study, multifunctional siRNA delivery nanoparticles are developed that combine imaging capability of nanoparticles with urokinase plasminogen activator receptor‐targeted delivery of siRNA expressing DNA nanocassettes. This theranostic nanoparticle platform consists of a nanoparticle conjugated with targeting ligands and double‐stranded DNA nanocassettes containing a U6 promoter and a shRNA gene for in vivo siRNA expression. Targeted delivery and gene silencing efficiency of firefly luciferase siRNA nanogenerators are demonstrated in tumor cells and in animal tumor models. Delivery of survivin siRNA expressing nanocassettes into tumor cells induces apoptotic cell death and sensitizes cells to chemotherapy drugs. The ability of expression of siRNAs from multiple nanocassettes conjugated to a single nanoparticle following receptor‐mediated internalization should enhance the therapeutic effect of the siRNA‐mediated cancer therapy.  相似文献   

7.
Target-specific nanoparticles with good stability, dispersibility and targeting properties are very desirable for in vivo applications like diagnosis and therapy. In this work, the potential of covalently biotinylated magnetic nanoparticles for targeting tumours has been analysed by various in vitro and in vivo studies. For quantitatively estimating the amount of biotin bound to the surface of magnetic nanoparticles, 4-Hydroxyazobenzene-2-carboxylic acid dye was used. Varying the pH conditions changes, the mean size and zeta potential and transverse relaxivity slightly, affects the contrast enhancing capability of the synthesized biotinylated magnetic nanoparticles minimally. Cytotoxicity of the synthesized nanoconjugate was analysed in two different cell lines HeLa and A549 by using sulpho-rhodamine B assay and tumour cell-targeting capability was analysed in HeLa cell lines by using confocal microscopy. The results of cytotoxicity analysis combined with intracellular uptake, biodistribution and gamma scintigraphy prove the tumour-targeting potential of the synthesized biocompatible biotinylated magnetic nanoparticle conjugate.  相似文献   

8.
Superparamagnetic iron oxide nanoparticles (SPION) have attracted great attention for nanomedical applications, but the mechanisms underlying the transmembrane transport of SPION in variant cells has not been fully defined. The present study investigated the internalization of SPION in three cell models with different phagocytic capacity using transmission electron microscopy (TEM) and energy dispersive spectrometer (EDS) analyses. The EDS study aimed to further confirm if the suspected internalized particles were iron-containing SPION. SPION could be taken up quickly by macrophage-like cell line RAW264.7 (with strong phagocytic capacity) and slowly by the 3T3-L1 cells (with weak phagocytic capacity), but not by red blood cells (with no phagocytic capacity). The internalized SPION were mainly found in the cytoplasmic vesicles, with no localization in the endoplasmic reticulum, mitochondria and nucleus. We conclude that the internalization of SPION in the three types of mammalian cells was mediated by phagocytosis, not by direct membrane penetration.  相似文献   

9.
Cell‐membrane‐coated nanoparticles have recently been studied extensively for their biological compatibility, retention of cellular properties, and adaptability to a variety of therapeutic and imaging applications. This class of nanoparticles, which has been fabricated with a variety of cell membrane coatings, including those derived from red blood cells (RBCs), platelets, white blood cells, cancer cells, and bacteria, exhibit properties that are characteristic of the source cell. In this study, a new type of biological coating is created by fusing membrane material from two different cells, providing a facile method for further enhancing nanoparticle functionality. As a proof of concept, the development of dual‐membrane‐coated nanoparticles from the fused RBC membrane and platelet membrane is demonstrated. The resulting particles, termed RBC–platelet hybrid membrane‐coated nanoparticles ([RBC‐P]NPs), are thoroughly characterized, and it is shown that they carry properties of both source cells. Further, the [RBC‐P]NP platform exhibits long circulation and suitability for further in vivo exploration. The reported strategy opens the door for the creation of biocompatible, custom‐tailored biomimetic nanoparticles with varying hybrid functionalities, which may be used to overcome the limitations of current nanoparticle‐based therapeutic and imaging platforms.  相似文献   

10.
Hydroxyapatite (HAP) is the main inorganic component of hard tissues and shows excellent biocompatibility and osteoconductivity properties. Nanoparticles of HAP can be synthesised by the precipitation method in distilled water. The needle shaped particles are below 100 nm in size with low-crystallinity and high-surfacial activation. Recent studies showed toxic effects of HAP nanoparticles on cancer cells. Other studies focus on the application of HAP nanoparticles as drug and gene delivery system or cell marker. However, to date, the exact internalization pathway of HAP nanoparticles into cells has not been determined. When HAP nanoparticles were added to cell culture medium, the particles immediately became instable and formed agglomerates with a size of about 500–700 nm. Hence, cells seldom encounter single HAP nanoparticles in the environment of cell culture or body fluid. The TEM showed internalized HAP captured by vacuoles in the cytoplasm of the hepatocellular carcinoma cells. The invaginations in the cell membrane before nanoparticle uptake suggested endocytic pathways as internalization mechanism. This study revealed that agglomerated HAP nanoparticles were internalized by cells through the energy-dependent process of clathrin-mediated endocytosis. Depletion of intracellular potassium arrested the formation of coated pit, which inhibited the uptake of HAP.  相似文献   

11.
The in vitro growth of embryonic stem cells (ESCs) is usually obtained in the presence of murine embryonic fibroblasts (MEF), but new methods for in vitro expansion of ESCs should be developed due to their potential clinical use. This study aims to establish a culture system to expand and maintain ESCs in the absence of MEF by using murine embryonic stem cells (mECS) as a model of embryonic stem cell. Magnetic nanoparticles (MNPs) were used for growing mESCs in the presence of an external magnetic field, creating the magnetic field-magnetic nanoparticle (MF-MNP) culture system. The growth characteristics were evaluated showing a doubling time slightly higher for mESCs cultivated in the presence of the system than in the presence of the MEF. The undifferentiated state was characterized by RT-PCR, immunofluorescence, alkaline phosphatase activity and electron microscopy. Murine embryonic stem cells cultivated in presence of the MF-MNP culture system exhibited Oct-4 and Nanog expression and high alkaline phosphatase activity. Ultrastructural morphology showed that the MF-MNP culture system did not interfere with processes that cause structural changes in the cytoplasm or nucleus. The MF-MNP culture system provides a tool for in vitro expansion of mESCs and could contribute to studies that aim the therapeutic use of embryonic stem cells.  相似文献   

12.
The potential ecotoxicity of nanosized cadmium sulfide (CdS), synthesized by the polyol process, was investigated using common Anabaena flos-aquae cyanobacteria and Euglena gracilis euglenoid microalgae. The photosynthetic activities of these microorganisms, after addition of free Cd2+ ions and CdS nanoparticles, varied with the presence of tri-n-octylphosphine oxide (TOPO) used to protect surface particle to avoid toxicity and also to control particle size and shape during the synthesis. The nanoparticle concentration was varied from 10(-3) to 5 x 10(-4) M. It was observed that the cadmium concentration, the addition of TOPO protective agent and the particle dissolution process in the culture medium play an important role during the ecotoxicological tests. Viability tests were followed by PAM fluorimetry. Cd2+ ions were very toxic for Anabaena flos aquae. The same behavior was observed after contact with CdS and CdS-TOPO nanoparticles. However, for Euglena gracilis, the photosynthetic activity was stable for more than 1 month in the presence of Cd2+ ions. Moreover, it was observed that the toxicity varies with the concentration of CdS and CdS-TOPO nanoparticles, both kind of nanoparticles are toxic for this microorganism. Transmission electron microscopy (TEM) analyses of microorganisms ultrathin sections showed that polysaccharides produced by Anabaena flos-aquae, after contact with CdS and CdS-TOPO nanoparticles, protect the microalgae against particle internalization. Only some particles were observed inside the cells. Moreover, the nanoparticle internalization was observed after contact with all nanoparticles in the presence of Euglena gracilis by endocytosis. All nanoparticles are inside vesicles formed by the cells.  相似文献   

13.
Endometriosis is a painful disorder where endometrium‐like tissue forms lesions outside of the uterine cavity. Intraoperative identification and removal of these lesions are difficult. This study presents a nanoplatform that concurrently delineates and ablates endometriosis tissues using real‐time near‐infrared (NIR) fluorescence and photothermal therapy (PTT). The nanoplatform consists of a dye, silicon naphthalocyanine (SiNc), capable of both NIR fluorescence imaging and PTT, and a polymeric nanoparticle as a SiNc carrier to endometriosis tissue following systemic administration. To achieve high contrast during fluorescence imaging of endometriotic lesions, nanoparticles are constructed to be non‐fluorescent prior to internalization by endometriosis cells. In vitro studies confirm that these nanoparticles activate the fluorescence signal following internalization in macaque endometrial stromal cells and ablate them by increasing cellular temperature to 53 °C upon interaction with NIR light. To demonstrate in vivo efficiency of the nanoparticles, biopsies of endometrium and endometriosis from rhesus macaques are transplanted into immunodeficient mice. Imaging with the intraoperative Fluobeam 800 system reveals that 24 h following intravenous injection, nanoparticles efficiently accumulate in, and demarcate, endometriotic grafts with fluorescence. Finally, the nanoparticles increase the temperature of endometriotic grafts up to 47 °C upon exposure to NIR light, completely eradicating them after a single treatment.  相似文献   

14.
A method for fast delivery of proteins conjugated to superparamagnetic iron oxide nanoparticles (SPION) into mammalian cells by applying a strong magnetic field in pulses was proposed. Firstly, SPION were prepared from an alkaline solution of divalent and trivalent iron ions and covalently bound with protein through the activation of N-ethyl-N'-(3-dimethylaminopropyl) carbodiimide (EDC). After fluorescently labelling, the protein-nanoparticle conjugate was mixed with mammalian cell line and exposed to a pulsed magnetic field for short durations of few milliseconds. Results suggested that superparamagnetic nanoparticles were able to carry proteins into living cells immediately. Cellular internalization of the fluorescently labelled protein-nanoparticle conjugate was proved by the observation of cell fluorescence in a fluorescent microscopy, as well as cell analysis by a flow cytometer. We found that the cellular uptake was accomplished dominantly by the process of bombardment of magnetic nanoparticles.  相似文献   

15.
16.
Nanotheranostics have been actively sought in precision nanomedicine in recent years. However, insufficient tumor accumulation and limited cell uptake often impede the nanotheranostic efficacy. Herein, pH‐sensitive charge‐reversible polymer‐coated layered double hydroxide (LDH) nanohybrids are devised to possess long circulation in blood but reserve surface charges in the weakly acidic tumor tissue to re‐expose therapeutic LDH nanoparticles for enhanced tumor accumulation and cell uptake. In vitro experimental data demonstrate that charge‐reversible nanohybrids mitigate the cell uptake in physiological conditions (pH 7.4), but remarkably facilitate internalization by tumor cells after charge reversion in the weakly acidic environment (pH 6.8). More significantly, about 6.0% of injected charge‐reversible nanohybrids accumulate in the tumor tissue at 24 h post injection, far higher than the average accumulation (0.7%) reported elsewhere for nanoparticles. This high tumor accumulation clearly shows the tumor tissues in T1‐weighted magnetic resonance imaging. As a consequence, >95% inhibition of tumor growth in the B16F0‐bearing mouse model is achieved via only one treatment combining RNAi and photothermal therapy under very mild irradiation (808 nm laser, 0.3 W cm?2 for 180 s). The current research thus demonstrates a new strategy to functionalize nanoparticles and simultaneously enhance their tumor accumulation and cell internalization for effective cancer theranostics.  相似文献   

17.
The mechanism(s) of nanoparticle-cell interactions are still not understood. At present there is little knowledge of the relevant length- and timescales for nanoparticle intracellular entry and localization within cells, or the cell-specificity of nanoparticle uptake and localisation. Here, the effect of particle size on the in-vitro intracellular uptake of model fluorescent carboxyl-modified polystyrene nanoparticles is investigated in various cell lines. A range of micro- and nanoparticles of defined sizes (40 nm to 2 μm) are incubated with a series of cell types, including HeLa and A549 epithelial cells, 1321N1 astrocytes, HCMEC D3 endothelial cells, and murine RAW 264.7 macrophages. Techniques such as confocal microscopy and flow cytometry are used to study particle uptake and subcellular localisation, making significant efforts to ensure reproducibility in a semiquantitative approach. The results indicate that internalization of (nano)particles is highly size-dependent for all cell lines studied, and the kinetics of uptake for the same type of nanoparticle varies in the different cell types. Interestingly, even cells not specialized for phagocytosis are able to internalize the larger nanoparticles. Intracellular uptake of all sizes of particles is observed to be highest in RAW 264.7 cells (a specialized phagocytic cell line) and the lowest in the HeLa cells. These results suggest that (nano)particle uptake might not follow commonly defined size limits for uptake processes, and highlight the variability of uptake kinetics for the same material in different cell types. These conclusions have important implications for the assessment of the safety of nanomaterials and for the potential biomedical applications of nanoparticles.  相似文献   

18.
Irinotecan is one of the main chemotherapeutic agents for colorectal cancer (CRC). MicroRNA‐200 (miR‐200) has been reported to inhibit metastasis in cancer cells. Herein, pH‐sensitive and peptide‐modified liposomes and solid lipid nanoparticles (SLN) are designed for encapsulation of irinotecan and miR‐200, respectively. These peptides include one cell‐penetrating peptide, one ligand targeted to tumor neovasculature undergoing angiogenesis, and one mitochondria‐targeting peptide. The peptide‐modified nanoparticles are further coated with a pH‐sensitive PEG‐lipid derivative with an imine bond. These specially‐designed nanoparticles exhibit pH‐responsive release, internalization, and intracellular distribution in acidic pH of colon cancer HCT116 cells. These nanoparticles display low toxicity to blood and noncancerous intestinal cells. Delivery of miR‐200 by SLN further increases the cytotoxicity of irinotecan‐loaded liposomes against CRC cells by triggering apoptosis and suppressing RAS/β‐catenin/ZEB/multiple drug resistance (MDR) pathways. Using CRC‐bearing mice, the in vivo results further indicate that irinotecan and miR‐200 in pH‐responsive targeting nanoparticles exhibit positive therapeutic outcomes by inhibiting colorectal tumor growth and reducing systemic toxicity. Overall, successful delivery of miR and chemotherapy by multifunctional nanoparticles may modulate β‐catenin/MDR/apoptosis/metastasis signaling pathways and induce programmed cancer cell death. Thus, these pH‐responsive targeting nanoparticles may provide a potential regimen for effective treatment of colorectal cancer.  相似文献   

19.
Progress of thermal tumor therapies and their translation into clinical practice are limited by insufficient nanoparticle concentration to release therapeutic heating at the tumor site after systemic administration. Herein, the use of Janus magneto‐plasmonic nanoparticles, made of gold nanostars and iron oxide nanospheres, as efficient therapeutic nanoheaters whose on‐site delivery can be improved by magnetic targeting, is proposed. Single and combined magneto‐ and photo‐thermal heating properties of Janus nanoparticles render them as compelling heating elements, depending on the nanoparticle dose, magnetic lobe size, and milieu conditions. In cancer cells, a much more effective effect is observed for photothermia compared to magnetic hyperthermia, while combination of the two modalities into a magneto‐photothermal treatment results in a synergistic cytotoxic effect in vitro. The high potential of the Janus nanoparticles for magnetic guiding confirms them to be excellent nanostructures for in vivo magnetically enhanced photothermal therapy, leading to efficient tumor growth inhibition.  相似文献   

20.
Superparamagnetic iron oxide nanoparticles (SPION) were coated with either Polyvinyl alcohol (PVA) or Vinyl alcohol/vinyl amine copolymer and further functionalized with the fluorochromes Cy3.5 or Texas Red. A colloidally stable suspension of nanoparticles was incubated on sheep synovial cells in vitro for 3, 24, 72, and 120 hours. Nanoparticle internalization into synoviocytes as well as biocompatibility was visualized using light, fluorescence and confocal microscopy and fluorochrome labeled cells were quantified by flow cytometry. Data were analyzed by ANOVA factorial tests. Amino-PVA-SPION alone was detectable in cytoplasmic endosome-like structures after 3 hours of incubation but resulted in early cell death after 24 hours. Although amino-PVA-Cy3.5-SPION and PVA-TexasRed-SPION were taken up more slowly and less intensely, both labeled more than 80% of the cells in culture, but did not significantly change cell morphology or vitality at any time of evaluation in comparison to control cells. Results indicate that functionalized amino PVA-coated SPION are biocompatible, were successfully internalized by synoviocytes and hold promise for future biomedical applications utilizing magnetic drug targeting in joint disease.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号