首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Andrimid (Adm) synthase, which belongs to the type II system of enzymes, produces Adm in Pantoea agglomerans. The adm biosynthetic gene cluster lacks canonical acyltransferases (ATs) to load the malonyl group to acyl carrier proteins (ACPs), thus suggesting that a malonyl‐CoA ACP transacylase (MCAT) from the fatty acid synthase (FAS) complex provides the essential AT activity in Adm biosynthesis. Here we report that an MCAT is essential for catalysis of the transacylation of malonate from malonyl‐CoA to AdmA polyketide synthase (PKS) ACP in vitro. Catalytic self‐malonylation of AdmA (PKS ACP) was not observed in reactions without MCAT, although many type II PKS ACPs are capable of catalyzing self‐acylation. This lack of self‐malonylation was explained by amino acid sequence analysis of the AdmA PKS ACP and the type II PKS ACPs. The results show that MCAT from the organism's FAS complex can provide the missing AT activity in trans, thus suggesting a protein–protein interaction between the fatty acid and polyketide synthases in the Adm assembly line.  相似文献   

2.
The antibiotic kirromycin is assembled by a hybrid modular polyketide synthases (PKSs)/nonribosomal peptide synthetases (NRPSs). Five of six PKSs of this complex assembly line do not have acyltransferase (AT) and have to recruit this activity from discrete AT enzymes. Here, we show that KirCI is a discrete AT which is involved in kirromycin production and displays a rarely found three‐domain architecture (AT1‐AT2‐ER). We demonstrate that the second AT domain, KirCI‐AT2, but not KirCI‐AT1, is the malonyl‐CoA‐specific AT which utilizes this precursor for loading the acyl carrier proteins (ACPs) of the trans‐AT PKS in vitro. In the kirromycin biosynthetic pathway, ACP5 is exclusively loaded with ethylmalonate by the enzyme KirCII and is not recognized as a substrate by KirCI. Interestingly, the excised KirCI‐AT2 can also transfer malonate to ACP5 and thus has a relaxed ACP‐specificity compared to the entire KirCI protein. The ability of KirCI‐AT2 to load different ACPs provides opportunities for AT engineering as a potential strategy for polyketide diversification.  相似文献   

3.
Phormidolide is a polyketide produced by a cultured filamentous marine cyanobacterium and incorporates a 16‐membered macrolactone. Its complex structure is recognizably derived from a polyketide synthase pathway, but possesses unique and intriguing structural features that prompted interest in investigating its biosynthetic origin. Stable isotope incorporation experiments confirmed the polyketide nature of this compound. We further characterized the phormidolide gene cluster (phm) through genome sequencing followed by bioinformatic analysis. Two discrete trans‐type acyltransferase (trans‐AT) ORFs along with KS‐AT adaptor regions (ATd) within the polyketide synthase (PKS) megasynthases, suggest that the phormidolide gene cluster is a trans‐AT PKS. Insights gained from analysis of the mode of acetate incorporation and ensuing keto reduction prompted our reevaluation of the stereochemistry of phormidolide hydroxy groups located along the linear polyketide chain.  相似文献   

4.
The gene clusters responsible for the biosynthesis of two antitumor antibiotics, ravidomycin and chrysomycin, have been cloned from Streptomyces ravidus and Streptomyces albaduncus, respectively. Sequencing of the 33.28 kb DNA region of the cosmid cosRav32 and the 34.65 kb DNA region of cosChry1‐1 and cosChryF2 revealed 36 and 35 open reading frames (ORFs), respectively, harboring tandem sets of type II polyketide synthase (PKS) genes, D ‐ravidosamine and D ‐virenose biosynthetic genes, post‐PKS tailoring genes, regulatory genes, and genes of unknown function. The isolated ravidomycin gene cluster was confirmed to be involved in ravidomycin biosynthesis through the production of a new analogue of ravidomycin along with anticipated pathway intermediates and biosynthetic shunt products upon heterologous expression of the cosmid, cosRav32, in Streptomyces lividans TK24. The identity of the cluster was further verified through cross complementation of gilvocarcin V (GV) mutants. Similarly, the chrysomycin gene cluster was demonstrated to be indirectly involved in chrysomycin biosynthesis through cross‐complementation of gilvocarcin mutants deficient in the oxygenases GilOII, GilOIII, and GilOIV with the respective chrysomycin monooxygenase homologues. The ravidomycin glycosyltransferase (RavGT) appears to be able to transfer both amino‐ and neutral sugars, exemplified through the structurally distinct 6‐membered D ‐ravidosamine and 5‐membered D ‐fucofuranose, to the coumarin‐based polyketide derived backbone. These results expand the library of biosynthetic genes involved in the biosyntheses of gilvocarcin class compounds that can be used to generate novel analogues through combinatorial biosynthesis.  相似文献   

5.
Macrolactins (MLNs) have unique structural patterns containing a 24‐membered ring lactone and diverse bioactivities. The MLN skeleton is biosynthesized via a trans‐acyl transferase (AT) type I polyketide synthase (PKS) pathway, but the tailoring steps are still unknown. Herein, we report the identification of a glycosyltransferase (GT) gene bmmGT1, which is located at different locus from the MLN gene cluster in the genome of marine‐derived Bacillus marinus B‐9987, and its functional characterization as an MLN GT, thus affording five novel MLNs analogues. Surprisingly, this GT is also capable of catalyzing the glycosylation of bacillaenes (BAEs), which are the prototypes of trans‐AT polyketides, thus suggesting broad substrate flexibility. These results provide the first significant insights into the glycosylation step in MLN and BAE biosynthetic pathways.  相似文献   

6.
To isolate a key polyketide biosynthetic intermediate for the 16‐membered macrolide FD‐891 ( 1 ), we inactivated two biosynthetic genes coding for post‐polyketide synthase (PKS) modification enzymes: a methyltransferase (GfsG) and a cytochrome P450 (GfsF). Consequently, FD‐892 ( 2 ), which lacks the epoxide moiety at C8–C9, the hydroxy group at C10, and the O‐methyl group at O‐25 of FD‐891, was isolated from the gfsF/gfsG double‐knockout mutant. In addition, 25‐O‐methyl‐FD‐892 ( 3 ) and 25‐O‐demethyl‐FD‐891 ( 4 ) were isolated from the gfsF and gfsG mutants, respectively. We also confirmed that GfsG efficiently catalyzes the methylation of 2 and 4 in vitro. Further, GfsF catalyzed the epoxidation of the double bond at C8‐C9 of 2 and 3 and subsequent hydroxylation at C10, to afford 4 and 1 , respectively. These results suggest that a parallel post‐PKS modification mechanism is involved in FD‐891 biosynthesis.  相似文献   

7.
The substrate flexibilities of several cytochrome P450 monooxygenases involved in macrolide biosynthesis were investigated to test their potential for the generation of novel macrolides. PikC hydroxylase in the pikromycin producer Streptomyces venezuelae accepted oleandomycin as an alternative substrate and introduced a hydroxy group at the C‐4 position, which is different from the intrinsic C‐12 hydroxylation position in the natural substrate. This is the first report of C‐4 hydroxylation activity of cytochrome P450 monooxygenase involved in the biosynthesis of 14‐membered macrolides. EryF hydroxylase from the erythromycin biosynthetic pathway of Saccharopolyspora erythraea and OleP oxidase from the oleandomycin biosynthetic pathway of Streptomyces antibioticus also showed a certain degree of plasticity towards alternative substrates. In particular, EryF and OleP were found to oxidize a 12‐membered macrolactone as an alternative substrate. These results demonstrate the potential usefulness of these enzymes to diversify macrolactones by post‐PKS oxidations.  相似文献   

8.
Divergolides are structurally diverse ansamycins produced by a bacterial endophyte (Streptomyces sp.) of the mangrove tree Bruguiera gymnorrhiza. By genomic analyses a gene locus coding for the divergolide pathway was detected. The div gene cluster encodes genes for the biosynthesis of 3‐amino‐5‐hydroxybenzoate and the rare extender units ethylmalonyl‐CoA and isobutylmalonyl‐CoA, polyketide assembly by a modular type I polyketide synthase (PKS), and enzymes involved in tailoring reactions, such as a Baeyer–Villiger oxygenase. A detailed PKS domain analysis confirmed the stereochemical integrity of the divergolides and provided valuable new insights into the formation of the diverse aromatic chromophores. The bioinformatic analyses and the isolation and full structural elucidation of four new divergolide congeners led to a revised biosynthetic model that illustrates the formation of four different types of ansamycin chromophores from a single polyketide precursor.  相似文献   

9.
A few acyltransferase (AT) domains of modular polyketide synthases (PKSs) recruit acyl carrier protein (ACP)-linked extender units with unusual C2 substituents to confer functionalities that are not available in coenzyme A (CoA)-linked ones. In this study, an AT specific for methoxymalonyl (MOM)-ACP in the third module of the ansamitocin PKS was structurally and biochemically characterized. The AT uses a conserved tryptophan residue at the entrance of the substrate binding tunnel to discriminate between different carriers. A W275R mutation switches its carrier specificity from the ACP to the CoA molecule. The acyl-AT complex structures clearly show that the MOM-ACP accepted by the AT has the 2S instead of the opposite 2R stereochemistry that is predicted according to the biosynthetic derivation from a d -glycolytic intermediate. Together, these results reveal the structural basis of ATs recognizing ACP-linked extender units in polyketide biosynthesis.  相似文献   

10.
FD‐891 is a 16‐membered cytotoxic antibiotic macrolide that is especially active against human leukemia such as HL‐60 and Jurkat cells. We identified the FD‐891 biosynthetic (gfs) gene cluster from the producer Streptomyces graminofaciens A‐8890 by using typical modular type I polyketide synthase (PKS) genes as probes. The gfs gene cluster contained five typical modular type I PKS genes (gfsA, B, C, D, and E), a cytochrome P450 gene (gfsF), a methyltransferase gene (gfsG), and a regulator gene (gfsR). The gene organization of PKSs agreed well with the basic polyketide skeleton of FD‐891 including the oxidation states and α‐alkyl substituent determined by the substrate specificities of the acyltransferase (AT) domains. To clarify the involvement of the gfs genes in the FD‐891 biosynthesis, the P450 gfsF gene was inactivated; this resulted in the loss of FD‐891 production. Instead, the gfsF gene‐disrupted mutant accumulated a novel FD‐891 analogue 25‐O‐methyl‐FD‐892, which lacked the epoxide and the hydroxyl group of FD‐891. Furthermore, the recombinant GfsF enzyme coexpressed with putidaredoxin and putidaredoxin reductase converted 25‐O‐methyl‐FD‐892 into FD‐891. In the course of the GfsF reaction, 10‐deoxy‐FD‐891 was isolated as an enzymatic reaction intermediate, which was also converted into FD‐891 by GfsF. Therefore, it was clearly found that the cytochrome P450 GfsF catalyzes epoxidation and hydroxylation in a stepwise manner in the FD‐891 biosynthesis. These results clearly confirmed that the identified gfs genes are responsible for the biosynthesis of FD‐891 in S. graminofaciens.  相似文献   

11.
Streptazone derivatives isolated from Streptomyces species are piperidine alkaloids with a cyclopenta[b]pyridine scaffold. Previous studies indicated that these compounds are polyketides, but the biosynthetic enzymes responsible for their synthesis are unknown. Here, we have identified the streptazone E biosynthetic gene cluster in Streptomyces sp. MSC090213JE08, which encodes a modular type I PKS and tailoring enzymes that include an aminotransferase, three oxidoreductases, and two putative cyclases. The functions of the six tailoring enzymes were analyzed by gene disruption, and two putative biosynthetic intermediates that accumulated in particular mutants were structurally elucidated. On the basis of these results, we propose a pathway for the biosynthesis of streptazone E in which the two putative cyclases of the nuclear transport factor 2–like superfamily are responsible for C?C bond formation coupled with epoxide ring opening to give the five‐membered ring of streptazone E.  相似文献   

12.
Norsolorinic acid synthase (NSAS) is a type I iterative polyketide synthase that occurs in the filamentous fungus Aspergillus parasiticus. PCR was used to clone fragments of NSAS corresponding to the acyl carrier protein (ACP), acyl transferase (AT) and beta-ketoacyl-ACP synthase (KS) catalytic domains. Expression of these gene fragments in Escherichia coli led to the production of soluble ACP and AT proteins. Coexpression of ACP with E. coli holo-ACP synthase (ACPS) let to production of NSAS holo-ACP, which could also be formed in vitro by using Streptomyces coelicolor ACPS. Analysis by mass spectrometry showed that, as with other type I carrier proteins, self-malonylation is not observed in the presence of malonyl CoA alone. However, the NSAS holo-ACP serves as substrate for S. coelicolor MCAT, S. coelicolor actinorhodin holo-ACP and NSAS AT domain-catalysed malonate transfer from malonyl CoA. The AT domain could transfer malonate from malonyl CoA to NSAS holo-ACP, but not hexanoate or acetate from either the cognate CoA or FAS ACP species to NSAS holo-ACP. The NSAS holo-ACP was also active in actinorhodin minimal PKS assays, but only in the presence of exogenous malonyl transferases.  相似文献   

13.
Griseoviridin (GV) and viridogrisein (VG, also referred to as etamycin), produced by Streptomyces griseoviridis, are two chemically unrelated compounds belonging to the streptogramin family. Both of these natural products demonstrate broad‐spectrum antibacterial activity and constitute excellent candidates for future drug development. To elucidate the biosynthetic machinery associated with production of these two unique antibiotics, the gene cluster responsible for both GV and VG production was identified within the Streptomyces griseoviridis genome and characterized, and its function in GV and VG biosynthesis was confirmed by inactivation of 30 genes and complementation experiments. This sgv gene cluster is localized to a 105 kb DNA region that consists of 36 open reading frames (ORFs), including four nonribosomal peptide synthetases (NRPSs) for VG biosynthesis and a set of hybrid polyketide synthases (PKS)‐NRPSs with a discrete acyltransferase (AT), SgvQ, to assemble the GV backbone. The enzyme encoding genes for VG versus GV biosynthesis are separated into distinct “halves” of the cluster. A series of four genes: sgvA, sgvB, sgvC, and sgvK, were found downstream of the PKS‐NRPS; these likely code for construction of a γ‐butyrolactone (GBL)‐like molecule. GBLs and the corresponding GBL receptor systems are the highest ranked regulators that are able to coordinate the two streptomyces antibiotic regulatory protein (SARP) family positive regulators SgvR2 and SgvR3; both are key biosynthetic activators. Models of GV, VG, and GBL biosynthesis were proposed by using functional gene assignments, determined on the basis of bioinformatics analysis and further supported by in vivo gene inactivation experiments. Overall, this work provides new insights into the biosyntheses of the GV and VG streptogramins that are potentially applicable to a host of combinatorial biosynthetic scenarios.  相似文献   

14.
Carminic acid is a C‐glucosylated octaketide anthraquinone and the main constituent of the natural dye carmine (E120), possessing unique coloring, stability, and solubility properties. Despite being used since ancient times, longstanding efforts to elucidate its route of biosynthesis have been unsuccessful. Herein, a novel combination of enzymes derived from a plant (Aloe arborescens, Aa), a bacterium (Streptomyces sp. R1128, St), and an insect (Dactylopius coccus, Dc) that allows for the biosynthesis of the C‐glucosylated anthraquinone, dcII, a precursor for carminic acid, is reported. The pathway, which consists of AaOKS, StZhuI, StZhuJ, and DcUGT2, presents an alternative biosynthetic approach for the production of polyketides by using a type III polyketide synthase (PKS) and tailoring enzymes originating from a type II PKS system. The current study showcases the power of using transient expression in Nicotiana benthamiana for efficient and rapid identification of functional biosynthetic pathways, including both soluble and membrane‐bound enzymes.  相似文献   

15.
The ajudazols are antifungal secondary metabolites produced by a hybrid polyketide synthase (PKS)‐nonribosomal peptide synthetase (NRPS) multienzyme “assembly line” in the myxobacterium Chondromyces crocatus Cm c5. The most striking structural feature of these compounds is an isochromanone ring system; such an aromatic moiety is only known from two other complex polyketides, the electron transport inhibitor stigmatellin and the polyether lasalocid. The cyclization and aromatization reactions in the stigmatellin pathway are presumed to be catalyzed by a cyclase domain located at the end of the PKS, while the origin of the lasalocid benzenoid ring remains obscure. Notably, the ajudazol biosynthetic machinery does not incorporate a terminal cyclase, but instead a variant thioesterase (TE) domain. Here we present detailed phylogenetic and sequence analysis, coupled with experiments both in vitro and in vivo, that suggest that this TE promotes formation of the isochromanone ring, a novel reaction for this type of domain. As the ajudazol TE has homologues in several other secondary‐metabolite pathways, these results are likely to be generalizable.  相似文献   

16.
Salinipyrones and pacificanones are structurally related polyketides from Salinispora pacifica CNS‐237 that are proposed to arise from the same modular polyketide synthase (PKS) assembly line. Genome sequencing revealed a large macrolide PKS gene cluster that codes for the biosynthesis of rosamicin A and a series of new macrolide antibiotics. Mutagenesis experiments unexpectedly correlated salinipyrone and pacificanone biosynthesis to the rosamicin octamodule Spr PKS. Remarkably, this bifurcated polyketide pathway illuminates a series of enzymatic domain‐ and module‐skipping reactions that give rise to natural polyketide product diversity. Our findings enlarge the growing knowledge of polyketide biochemistry and illuminate potential challenges in PKS bioengineering.  相似文献   

17.
Himeic acid A, which is produced by the marine fungus Aspergillus japonicus MF275, is a specific inhibitor of the ubiquitin‐activating enzyme E1 in the ubiquitin–proteasome system. To elucidate the mechanism of himeic acid biosynthesis, feeding experiments with labeled precursors have been performed. The long fatty acyl side chain attached to the pyrone ring is of polyketide origin, whereas the amide substituent is derived from leucine. These results suggest that a polyketide synthase–nonribosomal peptide synthase (PKS‐NRPS) is involved in himeic acid biosynthesis. A candidate gene cluster was selected from the results of genome sequencing analysis. Disruption of the PKS‐NRPS gene by Agrobacterium‐mediated transformation confirms that HimA PKS‐NRPS is involved in himeic acid biosynthesis. Thus, the him biosynthetic gene cluster for himeic acid in A. japonicus MF275 has been identified.  相似文献   

18.
19.
Type II polyketide synthases iteratively generate a nascent polyketide thioester of the acyl carrier protein (ACP); this is structurally modified to produce an ACP‐free intermediate towards the final metabolite. However, the timing of ACP off‐loading is not well defined because of the lack of an apparent thioesterase (TE) among relevant biosynthetic enzymes. Here, ActIV, which had been assigned as a second ring cyclase (CYC) in actinorhodin (ACT) biosynthesis, was shown to possess TE activity in vitro with a model substrate, anthraquinone‐2‐carboxylic acid‐N‐acetylcysteamine. In order to investigate its function further, the ACT biosynthetic pathway in Streptomyces coelicolor A3(2) was reconstituted in vitro in a stepwise fashion up to (S)‐DNPA, and the product of ActIV reaction was characterized as an ACP‐free bicyclic intermediate. These findings indicate that ActIV is a bifunctional CYC‐TE and provide clear evidence for the release timing of the intermediate from the ACP anchor.  相似文献   

20.
The biosynthetic gene cluster for tetronomycin (TMN), a polyether ionophoric antibiotic that contains four different types of ring, including the distinctive tetronic acid moiety, has been cloned from Streptomyces sp. NRRL11266. The sequenced tmn locus (113 234 bp) contains six modular polyketide synthase (PKS) genes and a further 27 open-reading frames. Based on sequence comparison to related biosynthetic gene clusters, the majority of these can be assigned a plausible role in TMN biosynthesis. The identity of the cluster, and the requirement for a number of individual genes, especially those hypothesised to contribute a glycerate unit to the formation of the tetronate ring, were confirmed by specific gene disruption. However, two large genes that are predicted to encode together a multifunctional PKS of a highly unusual type seem not to be involved in this pathway since deletion of one of them did not alter tetronomycin production. Unlike previously characterised polyether PKS systems, oxidative cyclisation appears to take place on the modular PKS rather than after transfer to a separate carrier protein, while tetronate ring formation and concomitant chain release share common mechanistic features with spirotetronate biosynthesis.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号