首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 70 毫秒
1.
周宸  高伟  郭谋发 《电气技术》2021,22(5):38-42,49
绝缘子是输电线路的重要元件,绝缘子缺陷会增大输电线路的故障停运风险,因此,对绝缘子缺陷状况的早期判别十分重要.本文提出一种基于YOLOv4模型的玻璃绝缘子自爆缺陷辨识方法.首先,通过无人机采集及数据增强获取大量详实的现场绝缘子图像;其次,通过采用迁移学习的训练策略训练YOLOv4网络并改进网络的输入图像以提高辨识的准确...  相似文献   

2.
为了满足无人机巡检过程中实时检测的需求,提出一种改进YOLOv4的绝缘子缺陷检测方法,在保证绝缘子检测精度的前提下,减小模型参数量,提升检测速度。该方法使用CSPDarknet53和MobileNetV1提取绝缘子的特征信息,对输出特征层进行堆叠处理,缩减通道数,减少模型计算量;精简路径聚合网络(path aggregation network, PANet)结构,将其中的标准卷积替换为深度可分离卷积;使用Decoupled Head替换原有预测网络;在训练过程中加入迁移学习策略和数据增强方法提高训练精度,使用绝缘子图像和视频测试网络训练效果。实验结果表明,改进后模型的绝缘子检测精度达到98.17%,同时对于单张绝缘子图像的识别速度提升5 ms。  相似文献   

3.
近年来,航拍巡检代替人工成为了输电线路电力巡检的主要方式,而输电线路上绝缘子的完整性直接影响其供电可靠性。在复杂背景的干扰下,传统的图片处理方法往往对主体识别能力低下。针对这一问题,该文提出了一种基于YOLOv4的深度学习并结合改进的分水岭算法,对航拍绝缘子图像精确识别及缺陷检测的问题进行了研究。首先利用YOLOv4对绝缘子进行精准的识别与定位,有效弥补了传统方法在复杂背景下识别能力低下的不足;再结合改进分水岭算法对绝缘子自爆位置进行识别,该方法可以快速地识别出绝缘子主体和缺陷位置。  相似文献   

4.
为了精准地识别无人机巡检图形中的小目标绝缘子及缺陷,本文提出了一种基于改进的深度学习目标检测网络(YOLOv4)的输电线路绝缘子缺陷检测方法.首先,通过无人机航拍及数据增强获得足够的绝缘子图像,构造绝缘子数据集.其次,利用绝缘子图像数据集训练YOLOv4网络,在训练过程中采用多阶段迁移学习策略和余弦退火学习率衰减法提高网络的训练速度和整体性能.最后,在测试过程中,对存在小目标的图像采用超分辨率生成网络,生成高质量的图像后再进行测试,以提高识别小目标的能力.实验结果表明,与Faster R-CNN和YOLOv3相比,所提算法在平均分类精度和每帧检测速率方面均有较大提升,性能表现优异.  相似文献   

5.
双目立体视觉系统通过模拟人的双眼来获取三维世界的深度信息,该系统主要由摄像机标定、特征点提取、特征点匹配、三维坐标求取等4个模块组成.对于传统算法特征点提取速度与特征匹配不能满足实时性的要求,提出了基于ORB算法的双目视觉目标定位.该算法通过在Brief描述子上加入了旋转矩阵,使算法具备了旋转不变性以及有着很大的效率提升.实验结果表明,该算法特征点提取与匹配速度有着一个数量级以上的提高,大大增加了在双目视觉系统下的实时性.  相似文献   

6.
为了实现恶劣天气条件下的绝缘子缺陷的实时检测,提出了一种改进的YOLOv4-Tiny绝缘子缺陷检测算法。通过对收集到的绝缘子数据集增加雨雪雾特效以及随机添加运动模糊进行数据集扩充,引入Focal Loss和EIOU设计检测器的损失函数,提高模型分类与回归精度,并在原始模型基础上嵌入一种轻量型的坐标注意力机制,以增强模型对检测目标位置的敏感性。实验结果表明,改进后的算法较原算法均值平均精度(mAP)提升了4.04%,同时该算法具备一定的实时检测能力。此外,改进后的YOLOv4-Tiny算法在恶劣天气下的绝缘子检测任务中具有良好的性能。  相似文献   

7.
马进  白雨生 《电子测量技术》2022,45(14):123-130
针对YOLOv4主干网络庞大、参数量多,应用于绝缘子缺陷检测中无法满足实时性要求的问题,提出一种轻量化的YOLOv4检测模型。首先,引入含ECA集成组件的GhostNet作为特征提取网络,保证特征提取能力的同时大幅减少模型参数,加快模型推理速度。其次,使用K-means++聚类算法确定出初始锚框尺寸,以适应绝缘子缺陷大小,提升缺陷定位精度。最后,在交叉熵损失函数的基础上引入Quality Focal Loss改进损失函数,进一步提升模型检测性能。实验结果表明,改进后的轻量化YOLOv4与原始YOLOv4相比,模型大小压缩至原来的62.47%,每秒帧率提升了68.83%,绝缘子缺陷检测的准确率提升了1.07%,在显著提升检测速度的同时保证了算法检测精度,且在小目标和复杂背景下表现突出。  相似文献   

8.
刘东东 《电工技术》2022,(2):151-155
为解决目前人工处理分析无人机巡检图像效率低、检测结果受人为因素影响较大的问题,提出了一种用于 检测绝缘子缺陷的改进 YOLOv4故障检测模型.通过改进普通卷积算法以提升检测速度,使用数据增强方法提高 YOLOv4对绝缘子缺陷检测性能,解决实际检测环境中缺陷图像数量少且识别精度低的问题.试验结果表明,所提方 法的缺陷检测精度和召回率分别为0.91和0.96,能够满足电力线路绝缘子缺陷检测的鲁棒性和准确性要求。  相似文献   

9.
绝缘子缺陷严重影响输电线路安全,航拍图像绝缘子缺失的有效识别是无人机线路巡检。提出一种轻量级网络的绝缘子缺失检测模型,使用轻量级网络MobileNetV3替换YOLOv4模型的CSPDarknet53网络。以分割性能和计算速度为判据,综合分析比较了YOLOv4模型和使用轻量型网络对其主干网络替换后的模型在绝缘子缺失检测上的性能,实验结果表明:筛选的YOLOv4-MobileNetV3轻量级网络绝缘子缺失检测模型能够准确定位图像中单、多目标绝缘子;改进后YOLOv4-MobileNetV3检测模型比原模型的体积减少了78%,FPS提升了4.85 f/s,而mAP仅降低0.6%。提出的绝缘子缺失检测方法能够满足无人机电力线路巡检的需求。  相似文献   

10.
王博文  刘兴东 《电气开关》2021,59(5):80-82,86
在高压输电线路中高压绝缘子需要不断检查和监测来防止故障和突发事件的发生,然而在绝缘子经常遭受恶劣天气条件的山区,人工检测的成本昂贵.本文利用航空图像中的YOLO(You Only Look Once)深度学习神经网络模型,在背景不杂乱、目标分辨率和光照条件变化的情况下,为绝缘子的检测提供了一种经济有效的解决方案.首先从航拍绝缘子自动检测绝缘子,然后再利用无人机对绝缘子状况进行实时分类,最后运用数据增强方法来避免实验中56000个图像样本的过度拟合.实验证明,该方法能够在无人机实时图像数据上准确定位绝缘子,然后用不同的分类对检测到的绝缘子图像进行冰、雪和水存在下的绝缘子表面状况评估.  相似文献   

11.
现有PCB(印刷电路板)缺陷检测方法,多采用参考法进行检测,对图片配准要求高,不仅耗时且定位误差大。YOLOv4速度快,精度高,但应用在PCB检测上存在着漏检的情况,对小目标检测效果不佳,现提出了一种基于改进YOLOv4算法的PCB缺陷检测方法。首先,以CSPDarknet53为主干网络,采用单特征层结构,避免了数据不均衡带来的先验框分配问题。然后,将网络中的五次卷积改进为CSP结构的残差单元,进一步提高特征提取能力。最后,采取K-means++对先验框重新进行聚类,提高模型训练效果。实验部分采取北京大学发布的PCB数据集进行训练,结果表明,改进后的算法mAP(平均精度均值)达到98.71%,在精度上优于其它常见的目标检测算法。  相似文献   

12.
针对传统方法检测锂电池表面缺陷精度低、速度慢的问题,提出一种改进的YOLOv4算法。首先,在 CSPDarknet-53 骨干网络中使用空洞卷积代替传统卷积,提高了对不同尺度缺陷的检测。其次,将通道注意力机制插入到颈部网络中,自适应地选择一维卷积核的大小,降低模型的复杂度和计算量。最后,在分类和边界框回归中融合条件卷积来提高网络性能,并扩大数据集以解决由于缺陷样本太少而导致的网络训练过拟合问题。实验结果表明,改进后的YOLOv4算法可以有效检测锂电池表面缺陷并提高对于缺陷的识别和定位能力。改进算法的平均精度均值为93.46%,相较原算法提高了3.03%。  相似文献   

13.
现有基于深度学习的目标检测方法在面对空中消费级无人机时,存在鲁棒性差、准确率不足等问题。 对此,提出一种基 于特征增强的 YOLOv4 目标检测方法—FEM-YOLOv4。 首先,针对无人机低、小、慢等特点,改进骨干网络,降低下采样倍数,充 分利用包含细粒度信息的浅层特征;其次,加入特征增强模块(feature enhancement module),通过使用不同空洞率的多分支卷积 层结构,综合不同深度的语义信息和空间信息,增强小尺度无人机的细节语义特征;另外,利用多尺度融合的特征金字塔结构, 突出特征图包含的细节信息和语义信息,提升模型对无人机目标的预测能力;最后,采用 K-means++算法对无人机目标候选框 的尺寸进行聚类分析。 与 6 种目标检算法进行对比,实验结果表明,FEM-YOLOv4 算法的 mAP 和 Recall 分别达到 89. 48%、 97. 4%,优于其他算法,且平均检测速度为 0. 042 s。  相似文献   

14.
传统的目标检测方法在检测输电线路小目标时,往往存在检测效果不佳,容错率低等问题,针对这种情况,提出一种基于改进的YOLOv4的输电线路小目标检测算法.为了提高输电线路小目标的检测效率,采用一种简化版的YOLOv4算法,减少特征层的使用,从而降低网络计算量.针对输电线路小目标这一特定应用,利用K-means++算法重新进...  相似文献   

15.
为了降低电力巡检机器人识别变电站指针式仪表的误检率,提高仪表读数识别的精度,设计了一种基于深度学习的指 针式仪表检测方法。 通过在 YOLOv4-tiny 网络结构基础上添加残差模块来提高模型的鲁棒性,并对 Hourglass 网络结构改进,达 到精准识别指针式仪表读数的目的。 为了验证所提出方法的有效性,以变电站现场仪表图像数据对方法进行测试,并将检测结 果与其他方法进行对比。 实验结果表明,仪表定位漏检率仅 1. 25%,指针定位精度在 1. 125%以内,整体检测时间小于 0. 5 s。 相较于常用的 Hough 直线检测与 ORB 结合或基于 U-net 模型的方法,读数识别的平均误差分别降低了 70. 8%和 58. 8%,为变电 站指针式仪表的读数识别提供新的思路。  相似文献   

16.
针对输电线路绝缘子识别准确率低、识别花费时间长的问题,提出一种改进的YOLOv5绝缘子识别方法。首先,通过引入超分辨率卷积网络提升数据集中图像样本质量;其次,通过引入k3-Ghost结构替换原始网络BCSP模块中的普通卷积,减少模型主干网络参数量,在主干网络尾部引入SENet注意力模块,加强模型对于通道信息的关注提升目标检测性能;在颈部网络引入DC-BiFPN结构替换原始结构,对不同尺度特征赋予不同权重以使多尺度特征进行更好的融合,提升绝缘子识别效果。最后,使用CIOU作为回归损失函数,加快网络收敛速度。实验结果表明:本文提出的方法在保证绝缘子识别准确率的同时拥有更高的识别速度,检测准确率达到89.5%,检测速度达到35.7FPS,验证了改进方法的有效性。  相似文献   

17.
接触网图像中绝缘子部件的自动精确定位是绝缘子故障检测的基础,绝缘子在接触网图像中存在倾角,采用水平框进 行检测难以精确契合目标。 针对此问题,提出一种改进 RetinaNet 的绝缘子精确定位方法。 首先利用高效 Ghost 模块代替原特 征提取网络中的卷积操作获得多尺度特征图,减少模型计算量;其次将注意力机制嵌入网络中,抑制次要特征对目标检测的影 响;然后引入旋转框作为模型的预测框实现绝缘子精确定位,降低冗余背景噪声的干扰;最后重新定义训练过程中的正负样本, 解决了添加旋转框导致学习错误样本的问题。 实验结果表明,该方法可以精确地定位绝缘子,抑制冗余背景信息,与原算法相 比检测精度提高 2. 8%,检测速度为 25. 6 FPS,参数量减少 42. 8%,具有良好的检测性能。  相似文献   

18.
为了解决钢筋绑扎机器人对绑扎点识别准确率低,定位精度差的问题,提出一种基于深度学习的钢筋绑扎机器人目标识别与定位方法。首先采用YOLOv4算法对绑扎点目标框识别和裁剪,完成绑扎点初始定位;其次设计轮廓角点选取方法,利用角点计算绑扎点的图像坐标;之后通过融入CBAM注意力机制改进Monodepth算法的特征提取部分,解码部分引入路径增强PAN结构,以提高模型的特征提取能力,进一步提高立体匹配精度;最后通过双目立体视觉定位技术获得绑扎点深度信息,并由坐标变换求解钢筋绑扎机器人手眼坐标系映射关系,从而实现对绑扎点的精确识别和定位。实验结果表明:该方法针对绑扎点目标框的识别准确率达到了99.75%,每秒传输帧数达到54.65;在空间中的定位精度最大误差为11.6mm。可较好地识别定位绑扎点位置,为自动绑扎工作提供有力支持。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号