首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 64 毫秒
1.
Removal of organic matter from water by PAC/UF system   总被引:21,自引:0,他引:21  
Tomaszewska M  Mozia S 《Water research》2002,36(16):4137-4143
The laboratory-scale ultrafiltration (UF) experiments were conducted to determine the effect of the presence of powdered activated carbon (PAC) on the UF process performance, in terms of flux decline and the possibilities of membranes cleaning during backwashing. Poly(vinylidene fluoride) membranes formed by the phase inversion technique were used in the UF experiments. A model solution was prepared as a mixture of humic acids (HA) and phenol in concentration of 10 and 1 mg l(-1), respectively. Commercial powdered activated carbons CWZ 11 and CWZ 30 (Gryfskand Sp. z o. o., Hajnówka, Poland) were used as the adsorbents. PAC dosage was in the range of 10-100 mg PAC l(-1). The process was carried out in the cross-flow system. It was found that PAC addition to the distilled water leads to a small drop in the permeate flux, regardless of PAC dose and its type. Although PAC particles are too large to block the membrane pores inside, they deposit on the membrane surface and partially can plug the surface pores. The experimental results demonstrate that the backwashing process applied in combined PAC/UF system was especially effective when PAC dosages were <20mg PAC l(-1). However, a similar permeate flux was maintained for all carbon dosages used and reached the value of about 1 m3 m(-2) d(-1). Moreover, no further drop in the permeate flux for PAC addition to the solution containing foulants (HA) was observed. Effectiveness of the removal of HA and phenol from the model solutions was also investigated. In the PAC/UF system HA were removed in about 90%, whereas the complete removal of phenol was achieved for PAC dosage equal to 100 mg l(-1).  相似文献   

2.
Lee N  Amy G  Croué JP  Buisson H 《Water research》2004,38(20):4511-4523
An understanding of natural organic matter (NOM) as a membrane foulant and the behavior of NOM components in low-pressure membrane fouling are needed to provide a basis for appropriate selection and operation of membrane technology for drinking water treatment. Fouling by NOM was investigated by employing several innovative chemical and morphological analyses.

Source (feed) waters with a high hydrophilic (HPI) fraction content of NOM resulted in significant flux decline. Macromolecules of a relatively hydrophilic character (e.g. polysaccharides) were effectively rejected by low-pressure membranes, suggesting that macromolecular compounds and/or colloidal organic matter in the hydrophilic NOM fraction may be a problematic foulant of low-pressure membranes. Moreover, the significant organic fouling that is contributed by polysaccharides and/or proteins in macromolecular and/or colloidal forms depends on molecular shape (structure) as well as size (i.e. molecular weight). More significant flux decline was observed in microfiltration (MF) compared to ultrafiltration (UF) membrane filtration. MF membrane fouling may be caused by pore blockage associated with large (macromolecular) hydrophilic molecules and/or organic colloids. In the case of UF membranes, the flux decline may be caused by sequential or simultaneous processes of surface (gel layer) coverage during filtration. Morphological analyses support the notion that membrane roughness may be considered as a more important factor in membrane fouling by controlling interaction between molecules and the membrane surface, compared to the hydrophobic/hydrophilic character of membranes. Membrane fouling mechanisms are not only a function of membrane type (MF versus UF) but also depend on source (feed) water characteristics.  相似文献   


3.
Assessing PAC contribution to the NOM fouling control in PAC/UF systems   总被引:3,自引:0,他引:3  
This paper investigates the powdered activated carbon (PAC) contribution to the fouling control by natural organic matter (NOM) in PAC/UF hybrid process, as well as the foulant behaviour of the PAC itself. Solutions of NOM surrogates (humic acids, AHA, and tannic acid, TA) and AOM/EOM (algogenic organic matter/extracellular organic matter) fractions from a Microcystis aeruginosa culture were permeated through an ultrafiltration (UF) hollow-fibre cellulose acetate membrane (100 kDa cut-off). The greatest impairment on flux and the poorest rejection were associated with polysaccharide-like EOM substances combined with mono and multivalent ions. PAC, either in the absence or in the presence of NOM, did not affect the permeate flux nor the reversible membrane fouling, regardless of the NOM characteristics (hydrophobicity and protein content) and water inorganics. However, PAC controlled the irreversible membrane fouling, minimising the chemical cleaning frequency. Furthermore, PAC enhanced AHA and TA rejections and the overall removal of AOM, although it was apparently ineffective for the highly hydrophilic EOM compounds.  相似文献   

4.
Ultrafiltration (UF) fouling has been attributed to concentration polarization, gel layer formation as well as outer and inner membrane pore clogging. It is believed that mass of humic materials either retained on membrane surface or associated with membrane inner pore surface is the primary cause for permeate flux decline and filtration resistance build-up in water supply industries. While biofilm/biofouling and inorganic matter could also be contributing factors for permeability decline in wastewater treatment practices. The present study relates UF fouling to mass of dissolved organic matter (DOM) retained on membrane and quantifies the effect of retained DOM mass on filtration flux decline. The results demonstrate that larger pore membranes exhibit significant flux decline in comparison with the smaller ones. During a 24-h period, dissolved organic carbon mass retained in 10 kDa membranes was about 1.0 g m−2 and that in 100 kDa membranes was more than 3 times higher (3.6 g m−2). The accumulation of retained DOM mass significantly affects permeate flux. It is highly likely that some DOMs bind or aggregate together to form surface gel layer in the smaller 10 kDa UF system; those DOMs largely present in inner pore and serving as pore blockage on a loose membrane (100 kDa) are responsible for severe flux decline.  相似文献   

5.
The efficacy of a microfiltration (MF) pilot plant in removing somatic coliphages (referred hereafter as coliphages) present in the secondary effluent was evaluated during this study. The impact of operating parameters such as feed coliphage concentrations, permeate flux and membrane fouling on the removal of coliphages by the MF plant was investigated. The study showed that membrane fouling was beneficial for removing coliphages by MF. It was also shown that the removal of coliphages by MF was initially governed by adsorption on membrane surface or in membrane pores. As the membrane fouled, however, the removal of coliphages was primarily governed by direct interception on the cake layer formed on the surface of the membrane. Increases in feed coliphage concentrations resulted in the passage of larger numbers of coliphages when the MF was clean but had little impact on the passage of coliphages when the membrane became fouled. Increasing permeate flux lowered log-removal values (LRVs) for the clean membrane but resulted in an initial increase in LRVs for the fouled membrane followed by a drop in LRVs with further increases in permeate flux.  相似文献   

6.
Chon K  Kim SJ  Moon J  Cho J 《Water research》2012,46(6):1803-1816
The effects of the combined coagulation-disk filtration (CC-DF) process on the fouling characteristics and behavior caused by interactions between effluent organic matter (EfOM) and the membrane surfaces of the ultrafiltration (UF) and reverse osmosis (RO) membranes in a pilot plant for municipal wastewater reclamation (MWR) were investigated. The feed water from secondary effluents was treated by the CC-DF process used as a pretreatment for the UF membrane to mitigate fouling formation and the permeate from the CC-DF process was further filtered by two UF membrane units in parallel arrangement and fed into four RO modules in a series connection. The CC-DF process was not sufficient to mitigate biofouling but the UF membrane was effective in mitigating biofouling on the RO membrane surfaces. Fouling of the UF and RO membranes was dominated by hydrophilic fractions of EfOM (e.g., polysaccharide-like and protein-like substances) and inorganic scaling (e.g., aluminum, calcium and silica). The desorbed UF membrane foulants included more aluminum species and hydrophobic fractions than the desorbed RO membrane foulants, which was presumably due to the residual coagulants and aluminum-humic substance complexes. The significant change in the surface chemistry of the RO membrane (a decrease in surface charge and an increase in contact angle of the fouled RO membranes) induced by the accumulation of hydrophilic EfOM onto the negatively charged RO membrane surface intensified the fouling formation of the fouled RO membrane by hydrophobic interaction between the humic substances of EfOM with relatively high hydrophobicity and the fouled RO membranes with decreased surface charge and increased contract angle.  相似文献   

7.
E Filloux  H Gallard  JP Croue 《Water research》2012,46(17):5531-5540
Anion exchange resin (AER), powder activated carbon (PAC) adsorption and ozonation treatments were applied on biologically treated wastewater effluent with the objective to modify the effluent organic matter (EfOM) matrix. Both AER and PAC led to significant total organic carbon (TOC) removal, while the TOC remained nearly constant after ozonation. Liquid Chromatography-Organic Carbon Detection (LC-OCD) analysis showed that the AER treatment preferentially removed high and intermediate molecular weight (MW) humic-like structures while PAC removed low MW compounds. Only a small reduction of the high MW colloids (i.e. biopolymers) was observed for AER and PAC treatments. Ozonation induced a large reduction of the biopolymers and an important increase of the low MW humic substances (i.e. building blocks).Single-cycle microfiltration (MF) and ultrafiltration (UF) tests were conducted using commercially available hollow fibres at a constant flux. After reconcentration to their original organic carbon content, the EfOM matrix modified by AER and PAC treatments exhibited higher UF membrane fouling compared to untreated effluent; result that correlated with the higher concentration of biopolymers. On the contrary, ozonation which induced a significant degradation of the biopolymers led to a minor flux reduction for both UF and MF filtration tests. Based on a single filtration, results indicate that biopolymers play a major role in low pressure membrane fouling and that intermediate and low MW compounds have minor impact. Thus, this approach has shown to be a valid methodology to identify the foulant fractions of EfOM.  相似文献   

8.
A pilot-plant study was designed to compare the effectiveness of microfiltration (MF) and ultrafiltration (UF) as pretreatment for high-pressure membranes in reclamation of biologically treated wastewater effluent. Granular media, filtered secondary effluent from a full-scale wastewater treatment plant, was fed to MF and UF units that operated in parallel. Each of these filtrates served as the feedwater to two reverse osmosis (RO) units and one nanofiltration (NF) unit that operated in parallel. The decline in specific flux was substantially lower for high-pressure membranes receiving UF than MF pretreatment over the course of each of four pilot plant runs that lasted from 1 to 7 weeks. The removal of organic matter as measured by dissolved organic carbon (DOC) was somewhat higher by UF than MF pretreatment (about 15% by UF compared with 11% by MF). Addition of ferric chloride ahead of the UF unit, but not ahead of the MF unit, may account for this additional removal of organic matter. However, the additional DOC removal appeared insufficient to explain the differential in foulant accumulation between high-pressure membranes receiving UF and MF pretreatment. Extensive autopsy analyses of these high-pressure membranes showed from 35% to 56% less organic carbon on those receiving UF rather than MF pretreatment. A more specific indicator of a differential in organic fouling was the accumulation of polysaccharides and this showed from 27% to 38% less on UF- than on MF-pretreated membranes. Yet another possible source of foulants is inorganic material given that the inorganic and organic weight percentages were nearly equal (56% vs. 44%) on the membrane surface. One specific source was aluminum added for phosphorus removal. Less fouling of high-pressure membranes pretreated by UF than MF could be due to the following: (1) a small, but very important, colloidal fouling fraction may have passed through MF but was rejected by UF pretreatment; (2) organic fouling was not related to organics in either the MF or UF filtrates but rather to organics that are generated in situ by microbial activity on the membrane surface; and/or (3) less passage of colloidal Al-P that carried over from secondary wastewater treatment.  相似文献   

9.
Zheng X  Ernst M  Jekel M 《Water research》2009,43(1):238-59
Ultrafiltration (UF) membranes can be used after conventional wastewater treatment to produce particle free and hygienically safe water for reuse. However, membrane fouling affects the performance of UF to a large extent. Stirred cell tests with UF membrane show high flux decline filtering treated domestic wastewater. Investigation on the impact of size fractioned substances indicates that dissolved substances are major foulants affecting water filterability. Dissolved organic substances in feed and permeate samples of the stirred cell tests are analyzed by liquid chromatography with online organic carbon detection (LC-OCD). The resulting chromatograms displayed a significant difference of feed and permeate samples in the range of large molecules identified as biopolymer peak. The substances detected in this peak (mostly macro polysaccharide-like and protein-like molecules) are almost completely retained by UF membranes. Quantified investigation shows that biopolymer concentration influences filterability of corresponding water sample proportionally. The apparent magnitude of delivered biopolymer to membrane has a striking correlation with fouling resistance. The relationship was verified to be reproducible using different water samples. Mechanism analysis demonstrates that based on the delivered biopolymer load to membrane pore blocking or cake/gel fouling is the main fouling mechanism in the present experiment conditions.  相似文献   

10.
Effect of functional groups of humic substances on uf performance   总被引:17,自引:0,他引:17  
Lin CF  Liu SH  Hao OJ 《Water research》2001,35(10):2395-2402
The role of different functional groups present in humic substances on the membrane flux is unclear. This study is undertaken to (1) separate the carboxyl and phenolic groups from a humic solution, and (2) evaluate the effect of each fractionated humic substances on the ultrafiltration (UF) performance. A weak-base amine resin was used for the adsorption (pH 7) and the subsequent desorption (pH 13) of the phenolic groups from a commercial humic solution. These fractions were evaluated qualitatively (via Fourier transform infrared spectroscopy) and quantitatively (titration); they were further subjected to the analyses of the trihalomethane formation potential (THMFP) and ultrafiltration performance. Although, a complete separation of the phenolic and carboxyl groups is not possible, the results nevertheless provide useful information about their effects on UF performance. The fraction with a higher content of the phenolic OH group exhibits the highest THMFP (190 microg/mg C), whereas the fraction with a higher content of the carboxyl groups exhibits more flux decline. The UF system evaluated is unable to remove a significant portion of THM precursors, resulting in high THMs in permeate. The use of powdered activated carbon for the pretreatment of these fractions fails to improve membrane fouling. The pore size of UF membrane does not appear to affect the membrane flux, and the switch from the hydrophobic to hydrophilic membrane only slight improves the permeate flux.  相似文献   

11.
With the increased use of membranes in drinking water treatment, fouling - particularly the hydraulically irreversible type - remains the main operating issue that hinders performance and increases operational costs. The main challenge in assessing fouling potential of feed water is to accurately detect and quantify feed water constituents responsible for membrane fouling. Utilizing fluorescence excitation-emission matrices (EEM), protein-like substances, humic and fulvic acids, and particulate/colloidal matter can be detected with high sensitivity in surface waters. The application of principal component analysis to fluorescence EEMs allowed estimation of the impact of surface water constituents on reversible and irreversible membrane fouling. This technique was applied to experimental data from a two year bench-scale study that included thirteen experiments investigating the fouling potential of Grand River water (Ontario, Canada) and the effect of biofiltration pre-treatment on the level of foulants during ultrafiltration (UF). Results showed that, although the content of protein-like substances in this membrane feed water (= biofiltered natural water) was much lower than commonly found in wastewater applications, the content of protein-like substances was still highly correlated with irreversible fouling of the UF membrane. In addition, there is evidence that protein-like substances and particulate/colloidal matter formed a combined fouling layer, which contributed to both reversible and irreversible fouling. It is suggested that fouling transitions from a reversible to an irreversible regime depending on feed composition and operating time. Direct biofiltration without prior coagulant addition reduced the protein-like content of the membrane feed water which in turn reduced the irreversible fouling potential for UF membranes. Biofilters also decreased reversible fouling, and for both types of fouling higher biofilter contact times were beneficial.  相似文献   

12.
Organic fouling and biofouling are the major severe types of fouling of reverse osmosis (RO) membranes in seawater (SW) desalination. Low pressure membrane filtration such as ultrafiltration (UF) has been developed as a pre-treatment before reverse osmosis. However, UF alone may not be an effective enough pre-treatment because of the existence of low-molecular weight dissolved organic matter in seawater. Therefore, the objective of the present work is to study a hybrid process, powdered activated carbon (PAC) adsorption/UF, with real seawater and to evaluate its performance in terms of organic matter removal and membrane fouling. The effect of different PAC types and concentrations is evaluated. Stream-activated wood-based PAC addition increased marine organic matter removal by up to 70% in some conditions. Moreover, coupling PAC adsorption with UF decreased UF membrane fouling and the fouling occurring during short-term UF was totally reversible. It can be concluded that the hybrid PAC adsorption/UF process performed in crossflow filtration mode is a relevant pre-treatment process before RO desalination, allowing organic matter removal of 75% and showing no flux decline for short-term experiments.  相似文献   

13.
A pilot-scale hybrid membrane system, consisting of a ceramic microfilter (MF), two differentpolyvinyl chloride (PVC) and polyacrylonitrile (PAN) ultrafilters (UF), and a polyamide reverse osmosis (RO) filter, has been utilized to decrease harmful and damaging components in wastewater produced from Tehran Refinery with aim to be reused at boilers and cooling towers. Taguchi method was employed to find optimum operating conditions including transmembrane pressure, cross flow velocity (CFV), temperature, and backwash time. Further, analysis of variance (ANOVA) was performed to determine the significance of controlling factors on total organic carbon rejection and normalized permeate flux. MF (ceramic)/UF (PVC) system reduced, %: oil 99.7; chemical oxygen demand (COD) 82; biochemical oxygen demand (BOD) 79.3; conductivity 60.5; total dissolved solids (TDS) 52.6; turbidity 99.7 and total hardness 73.2. MF(ceramic)/UF (PAN) system reduced: oil, COD, BOD, conductivity, TDS, turbidity, and total hardness by 99.8; 84.2; 80.8; 62.72; 55; 99.9 and 78.4%, respectively. UF (PAN)/RO system decreased, %: oil 99.5; COD 99; BOD 99; conductivity 98; TDS 98; turbidity 98.7 and total hardness 99.94. Obtained treated wastewater by this system can be reused as feed water of boilers.  相似文献   

14.
Increasingly stringent regulations for drinking water quality have stimulated the ultrafiltration (UF) to become one of the best alternatives replacing conventional drinking water treatment technologies. However, UF is not very effectively to remove humic acid due to the comparatively larger pore size compared to the size of humic acid. Fouling issue is another factor that restricts its widespread application. In this study, rejection of humic acid and flux decline were compared with essentially neutral, negatively charged version of a regenerated cellulose membrane, in which electrostatic interaction was explored for a better humic acid removal and less fouling. Solution environment, including ionic strength, pH and calcium ion concentration, affecting humic acid removal and flux decline on negatively charged and neutral membranes was also compared. Results indicated that the appropriate charge modification on the neutral UF membrane could be an effective way for better removal of NOM and reduction of the membrane fouling due to the electrostatic interactions with the combination effect of membrane pore size. Electrostatic interactions are significant important to achieve high humic acid removal and less fouling, and to improve the water quality and protect people’s health.  相似文献   

15.
Humic substances (HS) represent the common agents contributing to flux decline during membrane filtration of natural water. In order to minimize the fouling during microfiltration (MF) of HS, modifying the operation of MF presents a promising alternative. A laboratory-scale electro-microfiltration (EMF) module was used to separate Aldrich HS from water by applying a voltage across the membrane. The presence of an electric field significantly reduced the flux decline. A flux comparable to that of ion-free water was attained when the voltage was near the critical electric field strength (Ecritical), i.e., the electrical field gradient that balances the advective and electrophoretic velocities of solute. At an applied voltage of 100 V (approximately 110 V/cm), it was able to reduce UV absorbance at 254 nm (UV254), total organic carbon (TOC) and trihalomethane formation potential (THMFP) by over 50% in the permeate. Results from 1H nuclear magnetic resonance (1H NMR) analysis suggest that the aromatic and functionalized aliphatic fractions decreased significantly in the permeate. The charged HS have large molecule weight compared with those passing through membrane. Results clearly indicate that a combination of electric force with MF can increase HS rejection and decrease flux decline. Electrophoretic attraction was the major mechanism for the improvement of flux and rejection over time.  相似文献   

16.
Chae SR  Yamamura H  Ikeda K  Watanabe Y 《Water research》2008,42(8-9):2029-2042
Two pilot-scale hybrid water treatment systems using two different poly-vinylidene fluoride (PVDF) microfiltration (MF) membranes (i.e. symmetric and composite) were operated at a constant permeate flux of 104.2l m(-2)h(-1) (=2.5 md(-1)) with a pre-coagulation/sedimentation, sand filtration (SF), and chlorination to produce potable water from surface water. Turbidity was removed completely. And humic substances, Al, and Fe were removed very well by the pilot-scale membrane system. To control microbial growth and mitigate membrane fouling, a NaOCl solution was injected into the effluent from SF before reaching the two membranes (pre-chlorination). However, it adversely affected membrane fouling due to the oxidization and adsorption of inorganic substances such as Al, Fe, and Mn. In the next run, the NaOCl was introduced during backwash (post-chlorination). As compared with the result of pre-chlorination, this change increased the operating period of the symmetric and the composite membranes from about 10 and 50 days to about 60 and 200 days, respectively.  相似文献   

17.
Decolorization of wastewater of a Baker's yeast plant by membrane processes   总被引:8,自引:0,他引:8  
The aim of this study is to develop a membrane-based treatment scheme to remove colorants from the effluent of a baker's yeast plant. For this purpose microfiltration (MF), ultrafiltration (UF) and nanofiltraton (NF) membranes with differing molecular weight cut-offs (MWCOs) were tested. To evaluate the effectiveness of membrane processes in treating the waste stream, optical density (OD), COD, color measurements together with permeation fluxes were used. Effects of pretreatment methods (coagulation and coarse filtration) and feed composition on OD, color, COD were studied. In addition, gel filtration analysis was employed to characterize feed and permeate streams in terms of MW distribution of organics that are present. Maximum rejections obtained were 94%, 89% and 72% for OD, color and COD, respectively, when 0.8 microm microfiltration membrane and 400 Da NF membrane were used in series. It was also observed that addition of intermediate UF steps did not increase overall rejections and final permeate flux of NF membrane. Based on these observations, an efficient scheme was offered.  相似文献   

18.
常在功 《供水技术》2010,4(3):24-27
进行了粉末活性炭(PAC)吸附缓解浸没式和内压式超滤膜污染试验研究,并探讨了PAC吸附缓解膜污染的机理。浸没式超滤膜试验结果表明:PAC通过吸附溶解小分子有机物,减少了膜孔堵塞和膜孔内吸附污染,缓解了运行初期通量的快速下降;但PAC在膜表面的累积会降低浸没式超滤膜的起始通量。内压式超滤膜试验结果表明:膜前PAC吸附预处理能提高对有机物的去除效能,降低膜表面的污染负荷,从而降低TMP及其增长速度。  相似文献   

19.
Membrane filtration has been increasingly used for water treatment and wastewater reclamation in recent years. To further improve the effectiveness of membrane process and reduce membrane fouling, a highly reactive photocatalytic membrane, Ag-TiO2/hydroxiapiate (HAP, Ca10(PO4)6(OH)2)/Al2O3, was employed to realize microfiltration (MF) coupling photocatalysis for surface water treatment. The effectiveness on the potential of membrane was investigated by removing humic acid (HA) test under different feed total organic carbon (TOC), light intensity and transmembrane pressure (TMP). The HA removal and anti-fouling property of as-prepared membrane was improved under UV irradiation, likely due to photocatalytic degradation of foulants along with filtration simultaneously. Under given feed water composition, increasing the light intensity resulted in increased removal of HA from aqueous solution. However, a limiting TMP seems to exist beyond which the increased HA removal cannot be sustained. Fouling behavior analysis indicated that the transition in fouling mode from initial pore blocking to cake filtration occurred much slower as UV irradiated. Furthermore, a superior efficiency on removal of trace organic contaminants, as well as milder flux reduction, was presented from surface water treatment, which demonstrated that the integrated system with enhanced performance is foreseen as an emerging technique for water treatment.  相似文献   

20.
Titania membranes, with a molecular weight cut-off of 15 kD were used in an ozonation/membrane system that was fed with water from Lake Lansing, which had been pre-filtered through a 0.45 microm glass fiber filter. The application of ozone gas prior to filtration resulted in significant decreases in membrane fouling. The effects of ozonation could not be explained by physical scouring of the filter cake. Decrease in the pH resulted in a concomitant increase in the dissolved ozone concentration in the feed water and in an improvement in permeate flux recovery. Increasing the ozone concentration beyond a threshold value had no beneficial effect on permeate flux recovery. Ozone decomposition, resulting in the formation of OH or other radicals at the membrane surface, is thought to result in the decomposition of organic foulants at the membrane surface and reduce the extent of membrane fouling.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号