首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 265 毫秒
1.
Infections caused by multidrug-resistant (MDR) bacteria, particularly Gram-negative bacteria, are an escalating global health threat. Often clinicians are forced to administer the last-resort antibiotic colistin; however, colistin resistance is becoming increasingly prevalent, giving rise to the potential for a situation in which there are no treatment options for MDR Gram-negative infections. The development of adjuvants that circumvent bacterial resistance mechanisms is a promising orthogonal approach to the development of new antibiotics. We recently disclosed that the known IKK-β inhibitor IMD-0354 potently suppresses colistin resistance in several Gram-negative strains. In this study, we explore the structure–activity relationship (SAR) between the IMD-0354 scaffold and colistin resistance suppression, and identify several compounds with more potent activity than the parent against highly colistin-resistant strains of Acinetobacter baumannii and Klebsiella pneumoniae.  相似文献   

2.
Infection due to multidrug resistance pathogens is difficult to manage due to bacterial virulence factors and because of a relatively limited choice of antimicrobial agents. Thus, it is imperative to discover fresh antimicrobials or new practices that are effective for the treatment of infectious diseases caused by drug-resistant microorganisms. The objective of this experiment is to investigate for synergistic outcomes when crude methanolic extract of the stem bark of Afzelia africana and antibiotics were combined against a panel of antibiotic resistant bacterial strains that have been implicated in infections. Standard microbiological protocols were used to determine the minimum inhibitory concentrations (MICs) of the extract and antibiotics, as well as to investigate the effect of combinations of the methanolic extract of A. africana stem bark and selected antibiotics using the time-kill assay method. The extract of Afzelia africana exhibited antibacterial activities against both Gram-negative and Gram-positive bacteria made up of environmental and standard strains at a screening concentration of 5 mg/mL. The MICs of the crude extracts and the antibiotics varied between 1 μg/mL and 5.0 mg/mL. Overall, synergistic response constituted about 63.79% of all manner of combinations of extract and antibiotics against all test organisms; antagonism was not detected among the 176 tests carried out. The extract from A. africana stem bark showed potentials of synergy in combination with antibiotics against strains of pathogenic bacteria. The detection of synergy between the extract and antibiotics demonstrates the potential of this plant as a source of antibiotic resistance modulating compounds.  相似文献   

3.
Methicillin-resistant strains of Staphylococcus aureus (MRSA) have become a global issue for healthcare systems due to their resistance to most β-lactam antibiotics, frequently accompanied by resistance to other classes of antibiotics. In this work, we analyzed the impact of combined use of rotating magnetic field (RMF) with various classes of antibiotics (β-lactams, glycopeptides, macrolides, lincosamides, aminoglycosides, tetracyclines, and fluoroquinolones) against nine S. aureus strains (eight methicillin-resistant and one methicillin-sensitive). The results indicated that the application of RMF combined with antibiotics interfering with cell walls (particularly with the β-lactam antibiotics) translate into favorable changes in staphylococcal growth inhibition zones or in minimal inhibitory concentration values compared to the control settings, which were unexposed to RMF. As an example, the MIC value of cefoxitin was reduced in all MRSA strains by up to 42 times. Apart from the β-lactams, the reduced MIC values were also found for erythromycin, clindamycin, and tetracycline (three strains), ciprofloxacin (one strain), gentamicin (six strains), and teicoplanin (seven strains). The results obtained with the use of in vitro biofilm model confirm that the disturbances caused by RMF in the bacterial cell walls increase the effectiveness of the antibiotics towards MRSA. Because the clinical demand for new therapeutic options effective against MRSA is undisputable, the outcomes and conclusions drawn from the present study may be considered an important road into the application of magnetic fields to fight infections caused by methicillin-resistant staphylococci.  相似文献   

4.
Antibiotic-loaded bone graft substitutes are attractive clinical options and have been used for years either for prophylaxis or therapy for periprosthetic and fracture-related infections. Calcium sulfate and hydroxyapatite can be combined in an injectable and moldable bone graft substitute that provides dead space management with local release of high concentrations of antibiotics in a one-stage approach. With the aim to test preventive strategies against bone infections, a commercial hydroxyapatite/calcium sulfate bone graft substitute containing either gentamicin or vancomycin was tested against Staphylococcus aureus, Staphylococcus epidermidis and Pseudomonas aeruginosa, harboring different resistance determinants. The prevention of bacterial colonization and biofilm development by selected microorganisms was investigated along with the capability of the eluted antibiotics to select for antibiotic resistance. The addition of antibiotics drastically affected the ability of the selected strains to adhere to the tested compound. Furthermore, both the antibiotics eluted by the bone graft substitutes were able to negatively impair the biofilm maturation of all the staphylococcal strains. As expected, P. aeruginosa was significantly affected only by the gentamicin containing bone graft substitutes. Finally, the prolonged exposure to antibiotic-containing sulfate/hydroxyapatite discs did not lead to any stable or transient adaptations in either of the tested bacterial strains. No signs of the development of antibiotic resistance were found, which confirms the safety of this strategy for the prevention of infection in orthopedic surgery.  相似文献   

5.
Serine‐ and metallo‐β‐lactamases present a threat to the clinical use of nearly all β‐lactam antibiotics, including penicillins, cephalosporins, and carbapenems. Efforts to develop metallo‐β‐lactamase (MBL) inhibitors require suitable screening platforms to allow the rapid determination of β‐lactamase activity and efficient inhibition. Unfortunately, the platforms currently available are not ideal for this purpose. Further progress in MBL inhibitor identification requires inexpensive and widely applicable assays. Herein the identification of an inexpensive and stable chromogenic substrate suitable for use in assays of clinically relevant MBLs is described. (6R,7R)‐3‐((4‐Nitrophenoxy)methyl)‐8‐oxo‐7‐(2‐phenylacetamido)‐5‐thia‐1‐azabicyclo[4.2.0]oct‐2‐ene‐2‐carboxylic acid 5,5‐dioxide (CLS405) was synthesised in a three‐step protocol. CLS405 was then characterised spectroscopically, and its stability and kinetic properties evaluated. With a Δλmax value of 100 nm between the parent and hydrolysis product, a higher analytical accuracy is possible with CLS405 than with commonly used chromogenic substrates. The use of CLS405 in assays was validated by MBL activity measurements and inhibitor screening that resulted in the identification of N‐hydroxythiazoles as new inhibitor scaffolds for MBLs. Further evaluation of the identified N‐hydroxythiazoles against a panel of clinically relevant MBLs showed that they possess inhibitory activities in the mid‐ to low‐micromolar range. The findings of this study provide both a useful tool compound for further inhibitor identification, and novel scaffolds for the design of improved MBL inhibitors with potential as antibiotics against resistant strains of bacteria.  相似文献   

6.
Peptide dendrimers are a class of molecules of high interest in the search for new antibiotics. We used microwave‐assisted, copper(I)‐catalyzed alkyne–azide cycloaddition (CuAAC; “click” chemistry) for the simple and versatile synthesis of a new class of multivalent antimicrobial peptides (AMPs) containing solely arginine and tryptophan residues. To investigate the influence of multivalency on antibacterial activity, short solid‐phase‐ synthesized azide‐modified Arg‐Trp‐containing peptides were “clicked” to three different alkyne‐modified benzene scaffolds to access scaffolds with one, two, or three peptides. The antibacterial activity of 15 new AMPs was investigated by minimal inhibitory concentration (MIC) assays on five different bacterial strains, including a multidrug‐resistant Staphylococcus aureus (MRSA) strain. With ultrashort (2–3 residues) peptides, a clear synergistic effect of the trivalent display was observed, whereas this effect was not apparent with longer peptides. The best candidates showed activities in the low‐micromolar range against Gram‐positive MRSA. Surprisingly, the best activity against Gram‐negative Acinetobacter baumannii was observed with an ultrashort dipeptide on the trivalent scaffold (MIC: 7.5 μM ). The hemolytic activity was explored for the three most active peptides. At concentrations ten times the MIC values, <1 % hemolysis of red blood cells was observed.  相似文献   

7.
The actual use of antibiotics includes, not just its therapeutic cases, but also for disease prevention and as a growth promoter in animals. These practices have resulted in the propagation of resistance to antibiotics, representing a threat for Public Health. In this work, the antibiotic sensibility pattern of 20 Listeria monocytogenes and 40 Salmonella spp. strains, isolated from foodstuff was studied and compared with the antibiotic sensibility patterns of 20 L. monocytogenes and 100 Salmonella strains of clinical origin. 95% of the L. monocytogenes strains isolated from food were sensible to ampicillin, compared with the 65% of the clinical origin strains. Same way, 100% of food strains were sensible to gentamicin, compared with 85% of clinical origin strains. 95% of both showed sensibility to trimethoprim sulfametoxazole and 100% to ciprofloxacin. For Salmonella spp., the sensibility patterns for trimethoprim sulfametoxazole, gentamicin, ciprofloxacin, nalidixic acid and amoxicilin/clavulanic acid from both origins were similar. Nevertheless, food origin strains showed a 97.5% and 82.5% sensibility for tetracycline and cephalosporin respectively, compared with a 83 and 90% sensibility shown by clinical origin strains. The results obtained demonstrate the potential risk that bacterial strains isolated from food represent in the transmission of antibiotics' resistance.  相似文献   

8.
Methicillin-resistant strains of Staphylococcus aureus (MRSA) have developed resistance to most β-lactam antibiotics and have become a global health issue. In this work, we analyzed the impact of a rotating magnetic field (RMF) of well-defined and strictly controlled characteristics coupled with β-lactam antibiotics against a total of 28 methicillin-resistant and sensitive S. aureus strains. The results indicate that the application of RMF combined with β-lactam antibiotics correlated with favorable changes in growth inhibition zones or in minimal inhibitory concentrations of the antibiotics compared to controls unexposed to RMF. Fluorescence microscopy indicated a drop in the relative number of cells with intact cell walls after exposure to RMF. These findings were additionally supported by the use of SEM and TEM microscopy, which revealed morphological alterations of RMF-exposed cells manifested by change of shape, drop in cell wall density and cytoplasm condensation. The obtained results indicate that the originally limited impact of β-lactam antibiotics in MRSA is boosted by the disturbances caused by RMF in the bacterial cell walls. Taking into account the high clinical need for new therapeutic options, effective against MRSA, the data presented in this study have high developmental potential and could serve as a basis for new treatment options for MRSA infections.  相似文献   

9.
In typical in vitro tests for clinical use or development of antibiotics, samples from a bacterial population are exposed to an antibiotic at various concentrations. The resulting data can then be used to build a mathematical model suitable for dosing regimen design or for further development. For bacterial populations that include resistant subpopulations—an issue that has reached alarming proportions—building such a model is challenging. In prior work, we developed a related modeling framework for such heterogeneous bacterial populations following linear dynamics when exposed to an antibiotic. We extend this framework to the case of logistic dynamics, common among strongly resistant bacterial strains. Explicit formulas are developed that can be easily used in parameter estimation and subsequent dosing regimen design under realistic pharmacokinetic conditions. A case study using experimental data from the effect of an antibiotic on a gram‐negative bacterial population exemplifies the usefulness of the proposed approach. © 2015 American Institute of Chemical Engineers AIChE J, 61: 2385–2393, 2015  相似文献   

10.
Arthropod antimicrobial peptides (AMPs) offer a promising source of new leads to address the declining number of novel antibiotics and the increasing prevalence of multidrug-resistant bacterial pathogens. AMPs with potent activity against Gram-negative bacteria and distinct modes of action have been identified in insects and scorpions, allowing the discovery of AMP combinations with additive and/or synergistic effects. Here, we tested the synergistic activity of two AMPs, from the dung beetle Copris tripartitus (CopA3) and the scorpion Heterometrus petersii (Hp1090), against two strains of Escherichia coli. We also tested the antibacterial activity of two hybrid peptides generated by joining CopA3 and Hp1090 with linkers comprising two (InSco2) or six (InSco6) glycine residues. We found that CopA3 and Hp1090 acted synergistically against both bacterial strains, and the hybrid peptide InSco2 showed more potent bactericidal activity than the parental AMPs or InSco6. Molecular dynamics simulations revealed that the short linker stabilizes an N-terminal 310-helix in the hybrid peptide InSco2. This secondary structure forms from a coil region that interacts with phosphatidylethanolamine in the membrane bilayer model. The highest concentration of the hybrid peptides used in this study was associated with stronger hemolytic activity than equivalent concentrations of the parental AMPs. As observed for CopA3, the increasing concentration of InSco2 was also cytotoxic to BHK-21 cells. We conclude that AMP hybrids linked by glycine spacers display potent antibacterial activity and that the cytotoxic activity can be modulated by adjusting the nature of the linker peptide, thus offering a strategy to produce hybrid peptides as safe replacements or adjuncts for conventional antibiotic therapy.  相似文献   

11.
Bactericidal efficacy of gold nanoparticles conjugated with ampicillin, streptomycin and kanamycin were evaluated. Gold nanoparticles (Gnps) were conjugated with the antibiotics during the synthesis of nanoparticles utilizing the combined reducing property of antibiotics and sodium borohydride. The conjugation of nanoparticles was confirmed by dynamic light scattering (DLS) and electron microscopic (EM) studies. Such Gnps conjugated antibiotics showed greater bactericidal activity in standard agar well diffusion assay. The minimal inhibitory concentration (MIC) values of all the three antibiotics along with their Gnps conjugated forms were determined in three bacterial strains, Escherichia coli DH5α, Micrococcus luteus and Staphylococcus aureus. Among them, streptomycin and kanamycin showed significant reduction in MIC values in their Gnps conjugated form whereas; Gnps conjugated ampicillin showed slight decrement in the MIC value compared to its free form. On the other hand, all of them showed more heat stability in their Gnps conjugated forms. Thus, our findings indicated that Gnps conjugated antibiotics are more efficient and might have significant therapeutic implications. Biswarup Saha and Jaydeep Bhattacharya authors contributed equally.  相似文献   

12.
β‐Lactam antibiotics have been used for many years to treat bacterial infections. However the effective treatment of an increasing range of microbial infections is threatened by bacterial resistance to β‐lactams: the prolonged, widespread (and at times reckless) use of these drugs has spawned widespread resistance, which renders them ineffective against many bacterial strains. The cyclobutanone ring system is isosteric with β‐lactam: in cyclobutanone analogues, the eponymous cyclic amide is replaced with an all‐carbon ring, the amide N is substituted by a tertiary C?H α to a ketone. Cyclobutanone analogues of various β‐lactam antibiotics have been investigated over the last 35 years, initially as prospective antibiotics in their own right and inhibitors of the β‐lactamase enzymes that impart resistance to β‐lactams. More recently they have been tested as inhibitors of other serine proteases and as mechanistic probes of β‐lactam biosynthesis. Cyclobutanone analogues of the penam ring system are the first reversible inhibitors with moderate activity against all classes of β‐lactamase; other compounds from this family inhibit Streptomyces R61 dd ‐carboxypeptidase/transpeptidase, human neutrophil elastase and porcine pancreatic elastase. But has their potential as enzyme inhibitors been fully exploited? Challenges in synthesising diversely functionalised cyclobutanone derivatives mean that only a limited number have been made (with limited structural diversity) and evaluated. This review surveys the different synthetic approaches that have been taken to these compounds, the investigations made to evaluate their biological activity and prospects for future developments in this area.  相似文献   

13.
The occurrence of Pseudomonas aeruginosa (PA) persisters, including viable but non-culturable (VBNC) forms, subpopulations of tolerant cells that can survive high antibiotic doses, is the main reason for PA lung infections failed eradication and recurrence in Cystic Fibrosis (CF) patients, subjected to life-long, cyclic antibiotic treatments. In this paper, we investigated the role of subinhibitory concentrations of different anti-pseudomonas antibiotics in the maintenance of persistent (including VBNC) PA cells in in vitro biofilms. Persisters were firstly selected by exposure to high doses of antibiotics and their abundance over time evaluated, using a combination of cultural, qPCR and flow cytometry assays. Two engineered GFP-producing PA strains were used. The obtained results demonstrated a major involvement of tobramycin and bacterial cell wall-targeting antibiotics in the resilience to starvation of VBNC forms, while the presence of ciprofloxacin and ceftazidime/avibactam lead to their complete loss. Moreover, a positive correlation between tobramycin exposure, biofilm production and c-di-GMP levels was observed. The presented data could allow a deeper understanding of bacterial population dynamics during the treatment of recurrent PA infections and provide a reliable evaluation of the real efficacy of the antibiotic treatments against the bacterial population within the CF lung.  相似文献   

14.
With the increased evolution of aminoglycoside (AG)‐resistant bacterial strains, the need to develop AGs with 1) enhanced antimicrobial activity, 2) the ability to evade resistance mechanisms, and 3) the capability of targeting the ribosome with higher efficiency is more and more pressing. The chemical derivatization of the naturally occurring tobramycin (TOB) by attachment of 37 different thioether groups at the 6′′‐position led to the identification of generally poorer substrates of TOB‐targeting AG‐modifying enzymes (AMEs). Thirteen of these displayed better antibacterial activity than the parent TOB while retaining ribosome‐targeting specificity. Analysis of these compounds in vitro shed light on the mechanism by which they act and revealed three with clearly enhanced ribosome‐targeting activity.  相似文献   

15.
Given the rise of morbidity and mortality caused by Klebsiella pneumoniae (KP), the increasing number of strains resistant to antibiotics, and the emergence of hypervirulent Klebsiella pneumonia, treatment of KP infection becomes difficult; thus, novel drugs are necessary for treatment. Anthocyanins, or natural flavonoids, have an extensive effect against bacterial infection. However, few studies on anti-KP are identified. Here, we evaluated the therapeutic effect of purple sweet potato anthocyanins (PSPAs) on KP, containing 98.7% delphinidin 3-sambubioside. Results showed that KP-infected mice after PSPAs treatment manifested decreased mortality, weakened lung injury, dampened inflammatory responses, and reduced bacterial systemic dissemination in vivo. In Vitro, PSPAs significantly suppressed pyroptosis and restricted NLRP3 inflammasome activation in alveolar macrophages infected with KP. As for the mechanism, PSPAs promote mitophagy by recruiting Parkin to the mitochondria. PSPAs-conferred mitophagy increased mitochondrial membrane potential and decreased mitochondrial reactive oxygen species and mitochondrial DNA, resulting in impaired NLRP3 inflammasome activation. In addition, the promotion of mitophagy by PSPAs required the Nrf2 signaling pathway. Collectively, these findings suggest that PSPAs are a potential option for the treatment of KP infection.  相似文献   

16.
目的分析临床分离的大肠埃希菌和肺炎克雷伯菌的分布情况及耐药性。方法收集吉林大学中日联谊医院临床标本中分离的221株大肠埃希菌和152株肺炎克雷伯菌,采用纸片扩散法检测抗菌素的敏感性;双纸片协同试验和纸片表型确证试验筛选并确证产超广谱β-内酰胺酶的菌株;按照美国国家临床实验室标准化委员会(NCCLS)2005年版的标准判断结果。结果大肠埃希菌和肺炎克雷伯菌对亚胺培南和美罗培南的敏感性最高,均达100%;对头孢他啶、哌拉西林/他唑巴坦和头孢西丁的敏感性也较高,均大于70%,而对氨苄西林的耐药性均大于90%。共检出产超广谱β-内酰胺酶的大肠埃希菌118株,检出率为53.4%;肺炎克雷伯菌21株,检出率为13.8%;产超广谱β-内酰胺酶的两种菌株与非产超广谱β-内酰胺酶的同种菌株相比,对抗菌素的耐药性均明显增加。结论大肠埃希菌和肺炎克雷伯菌仍是产超广谱的β-内酰胺酶的主要菌株,且对常用抗菌素产生了较高的耐药性。  相似文献   

17.
Svenstrup N  Ehlert K  Ladel C  Kuhl A  Häbich D 《ChemMedChem》2008,3(10):1604-1615
The development of resistance has rendered several antibiotics clinically ineffective, and there is an urgent medical need for potent and safe antibacterials with a novel and valid mode of action. To avoid cross-resistance, they should preferably inhibit targets that are not addressed by established antibiotics. In this respect, 6-anilinouracils represent a promising lead structure. They target the Gram-positive DNA polymerase IIIC, a target that is associated with a bactericidal mode of action. Moreover, they have no cross-resistance to marketed antibiotics. This paper describes the synthesis and biological characterization of structurally novel anilinouracils, some of which display potent in vivo efficacy in murine models of bacterial septicemia.  相似文献   

18.
Sortase A (SrtA) is a membrane-associated enzyme that anchors surface-exposed proteins to the cell wall envelope of Gram-positive bacteria such as Staphylococcus aureus. As SrtA is essential for Gram-positive bacterial pathogenesis but dispensable for microbial growth or viability, SrtA is considered a favorable target for the enhancement of novel anti-infective drugs that aim to interfere with key bacterial virulence mechanisms, such as biofilm formation, without developing drug resistance. Here, we used virtual screening to search an in-house natural compound library and identified two natural compounds, N1287 (Skyrin) and N2576 ((4,5-dichloro-1H-pyrrol-2-yl)-[2,4-dihydroxy-3-(4-methyl-pentyl)-phenyl]-methanone) that inhibited the enzymatic activity of SrtA. These compounds also significantly reduced the growth of S. aureus but possessed moderate mammalian toxicity. Furthermore, S. aureus strains treated with these compounds exhibited reduction in adherence to host fibrinogen, as well as biofilm formation. Hence, these compounds may represent an anti-infective therapy without the side effects of antibiotics.  相似文献   

19.
In preparation for studies using natural products to probe interactions between bacterial consortia and settlement stage barnacles, we isolated 16 strains of bacteria associated with barnacles and examined: (1) effects of films of bacterial isolates on barnacle settlement, and (2) bacteriostatic effects of juncellins and standard antibiotics. Bacteria were isolated from the biofilm associated withBalanus amphitrite. On the basis of morphological and biochemical characteristics, bacteria were classified into five major groups:Aeromonas, Alcaligenes, Flavobacterium, Pseudomonas, andVibrio. Barnacle settlement was inhibited by allVibrio films and 64% of the other isolates. No film stimulated barnacle settlement. Juncellins were approximately as potent as standard antibiotics for all bacterial species tested.Vibrio spp. were most resistant to juncellins.  相似文献   

20.
The imaging of peptidoglycan (PGN) dynamics in living bacteria facilitates the understanding of PGN biosynthesis and wall-targeting antibiotics. The main tools for imaging bacterial PGN are fluorescent probes, such as the well-known PGN metabolic labeling probes. However, fluorescent small-molecule probes for labeling key PGN-synthesizing enzymes, especially for transglycosylases (TGases), remain to be explored. In this work, the first imaging probe for labeling TGase in bacterial cell wall studies is reported. We synthesized various fluorescent MoeA-based molecules by derivatizing the natural antibiotic moenomycin A (MoeA), and used them to label TGases in living bacteria, monitor bacterial growth and division cycles by time-lapse imaging, and study cell wall growth in the mecA-carrying methicillin-resistant Staphylococcus aureus (MRSA) strains when the β-lactam-based probes were unsuitable.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号