首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 359 毫秒
1.
Crystalline poly(ethylene‐co‐vinyl alcohol) (EVOH) membranes were prepared by a thermally induced phase separation (TIPS) process. The diluents used were 1,3‐propanediol and 1,3‐butanediol. The dynamic crystallization temperature was determined by DSC measurement. No structure was detected by an optical microscope in the temperature region higher than the crystallization temperature. This means that porous membrane structures were formed by solid–liquid phase separation (polymer crystallization) rather than by liquid–liquid phase separation. The EVOH/butanediol system showed a higher dynamic crystallization temperature and equilibrium melting temperature than those of the EVOH/propanediol system. SEM observation showed that the sizes of the crystalline particles in the membranes depended on the polymer concentration, cooling rate, and kinds of diluents. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 79: 2449–2455, 2001  相似文献   

2.
Polypropylene (PP) hollow fiber microfiltration membranes with excellent performance were successfully prepared from the PP‐binary diluent system via thermally induced liquid–liquid (L–L) phase separation method. The binary diluent consisted of myristic acid and diphenyl carbonate. The effects of the binary diluent on phase separation and membrane structure were systematically investigated. With the decrease in the weight ratio of myristic acid to diphenyl carbonate, the Flory–Huggins interaction parameter between PP and the binary diluent became more positive, and the mechanism of phase separation changed from solid–liquid (S–L) to L–L. This resulted in the membrane structure changing from spherulitic to bicontinuous. Moreover, as the weight ratio of myristic acid to diphenyl carbonate decreased from 11/9 to 2/3, the L–L phase separation region kept enlarging while the viscosity of the whole system became higher. The pore size of the cross‐section increased due to the longer coarsening time while the surface pore size decreased due to the higher viscosity of the system. The bulk porosity of resultant PP membranes was mostly higher than 70% and pure water flux were generally larger than 650 L m?2 h?1. In addition, the PP hollow fiber microfiltration membrane possessed excellent mechanical properties (tensile strength of 3.47 MPa and elongation of 118%) and good separation performance (rejection to PEO (Mw = 1000 kDa) of 94.6%) when the weight ratio of myristic acid to diphenyl carbonate was 2/3. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42490.  相似文献   

3.
The binary interaction model was introduced to estimate phase diagrams of copolymer‐diluent systems in thermally induced phase separation. The crystallization curves and cloud points of poly(ethylene‐co‐vinyl alcohol) (EVOH) with 1,4‐butanediol, EVOH/1,3‐propanediol, and EVOH/glycerol were calculated and compared with experimental value or literature data. Fair agreement was obtained. To confirm the importance of incorporating intramolecular interactions, calculations with and without the consideration of intramolecular interactions were performed and compared. It was found that better results can be obtained if intramolecular interaction was introduced. The reason for the small differences between the calculated value and the experimental data of the liquid–liquid phase separation is discussed. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci, 2007  相似文献   

4.
A high‐quality, heterogeneous hollow‐fiber affinity membranes modified with mercapto was prepared through phase separation with blends of a chelating resin and polysulfone as membrane materials, poly(ethylene glycol) as an additive, N,N‐dimethylacetamide as a solvent, and water as an extraction solvent. The effects of the blending ratio and chelating resin grain size on the structure of the hollow‐fiber affinity membrane were studied. The effects of the composition of the spin‐cast solution and process parameters of dry–wet spinning on the structure of the heterogeneous hollow‐fiber affinity membrane were investigated. The pore size, porosity, and water flux of the hollow‐fiber affinity membrane all decreased with an increase in the additive content, bore liquid, and dry‐spinning distance. With an increase in the extrusion volume outflow, the external diameter, wall thickness, and porosity of the hollow‐fiber affinity membrane all increased, but the pore size and water flux of the hollow‐fiber affinity membrane decreased. It was also found that the effects of the internal coagulant composition and external coagulant composition on the structure of the heterogeneous hollow‐fiber affinity membrane were different. The experimental results showed that thermal drawing could increase the mechanical properties of the heterogeneous hollow‐fiber affinity membrane and decrease the pore size, porosity, and water flux of the heterogeneous hollow‐fiber affinity membrane, and the thermal treatment could increase the homogeneity and stability of the structure of the heterogeneous hollow‐fiber affinity membrane. © 2007 Wiley Periodicals, Inc. J Appl Polym Sci 2007  相似文献   

5.
Porous membranes were prepared through the thermally induced phase separation of poly(ethylene‐co‐vinyl alcohol) (EVOH)/glycerol mixtures. The binodal temperature and dynamic crystallization temperature were determined by optical microscopy and differential scanning calorimetry measurements, respectively. It was determined experimentally that the liquid–liquid phase boundaries were shifted to higher temperatures when the ethylene content in EVOH increased. For EVOHs with ethylene contents of 32–44 mol %, liquid–liquid phase separation occurred before crystallization. Cellular pores were formed in these membranes. However, only polymer crystallization (solid–liquid phase separation) occurred for EVOH with a 27 mol % ethylene content, and the membrane morphology was the particulate structure. Scanning electron microscopy showed that the sizes of the cellular pores and crystalline particles in the membranes depended on the ethylene content in EVOH, the polymer concentration, and the cooling rate. Furthermore, the tendency of the pore and particle sizes was examined in terms of the solution thermodynamics of the binary mixture and the crystallization kinetics. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 87: 853–860, 2003  相似文献   

6.
Dual‐layer acetylated methyl cellulose (AMC) hollow fiber membranes were prepared by coupling the thermally induced phase separation (TIPS) and non‐solvent induced phase separation (NIPS) methods through a co‐extrusion process. The TIPS layer was optimized by investigating the effects of coagulant composition on morphology and tensile strength. The solvent in the aqueous coagulation bath caused both delayed liquid–liquid demixing and decreased polymer concentration at the membrane surface, leading to porous structure. The addition of an additive (triethylene glycol, (TEG)) to the NIPS solution resolved the adhesion instability problem of the TIPS and NIPS layers, which occurred due to the different phase separation rates. The dual‐layer AMC membrane showed good mechanical strength and performance. Comparison of the fouling resistance of the AMC membranes with dual‐layer polyvinylidene fluoride (PVDF) hollow fiber membranes fabricated with the same method revealed less fouling of the AMC than the PVDF hollow fiber membrane. This study demonstrated that a dual‐layer AMC membrane with good mechanical strength, performance, and fouling resistance can be successfully fabricated by a one‐step process of TIPS and NIPS. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42715.  相似文献   

7.
Poly(ethylene-co-vinyl alcohol) (EVOH) hollow fiber membranes with ultrafiltration performance were prepared from EVOH/glycerol systems via thermally induced phase separation (TIPS). The diluent glycerol was used as bore liquid to make a lumen of the hollow fiber for the purpose of prevention of the diluent evaporation and the larger pores formation at the inner surface of the hollow fiber. The obtained hollow fiber membranes showed asymmetric structures with skin layer near the outer surface, the larger pores just below the skin layer and the smaller pores near the inner surface. The formation of the larger pores near the outer surface was due to the enhanced pore growth by the water penetration. Some primary factors affecting the structure and performance of the membranes such as ethylene content (EC) in EVOH, cooling water bath temperature and take-up speed were studied extensively. The water permeability can be improved by increasing the water bath temperature and the take-up speed and by decreasing the EC. Both the pore size at the outer surface and the connectivity between the pores have to be considered together to understand the experimental result of the water permeability and the solute rejection.  相似文献   

8.
To regulate the polymer–diluent interaction and control the viscosity of the casting solution, diphenyl ketone (DPK) and a N,N‐dimethylacetamide/N,N‐dimethylformamide mixture were selected as a combined diluent. Poly(vinyl chloride) (PVC) utlrafiltration membranes, which had sufficient mechanical properties for their practical applications because of their bicontinuous spongy structure, were prepared by a combined process of thermally induced phase separation and non‐solvent‐induced phase separation. The phase‐separation mechanism was analyzed. In an air bath, the cast nascent solution immediately transformed into a transparent gel, and liquid–liquid phase separation was induced by a sudden drop in the temperature before crystallization. An ice–water bath was used to coagulate the membrane. The effects of the DPK and PVC concentrations on the membrane structures and performances were mainly investigated. The results show that an increase in the DPK content made the membrane pores change from fingerlike to spongy. Fully spongy pores formed, and the pores size decreased with increasing PVC concentration. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 42953.  相似文献   

9.
The downstream processing of 1,3‐propanediol fermentation broth using flocculation, reactive extraction, and reactive distillation was studied. Cellular debris and soluble protein in the broth were flocculated by combined use of chitosan and polyacrylamide at optimal concentrations of 150 ppm and 70 ppm, respectively; the soluble protein in the broth decreased to 0.06 g L?1, and the recovery ratio of the supernatant liquor to broth was greater than 99%. 1,3‐Propanediol and other alcohols were extracted from the supernatant liquor by reacting with butyraldehyde. In a four‐stage countercurrent extraction with the volume ratio of the extraction solvent to the aqueous phase being 20:100, more than 99% 1,3‐propanediol acetal (2‐propyl‐1,3‐dioxane) and 2,3‐butanediol acetal (2‐propyl‐4,5‐dimethyl‐1,3‐dioxolane) were recovered from the aqueous phase; 35% of the glycerol acetals were recovered. The acetals produced were hydrolyzed in a reactive distillation column using the strongly acidic cation‐exchange resin as catalyst, the bottom product obtained was a mixture of 1,3‐propanediol (407 g L?1), 2,3‐butanediol (252 g L?1), glycerol (277 g L?1), and glycerol acetals (146 g L?1). Copyright © 2005 Society of Chemical Industry  相似文献   

10.
BACKGROUND: Glycerol dehydrogenase [EC.1.1.1.6] and 1,3‐propanediol oxidoreductase [EC.1.1.1.202] were proved to be two of the key enzymes for glycerol conversion to 1,3‐propanediol in Klebsiella pneumoniae under anaerobic conditions. For insight into their significance on 1,3‐propanediol production under micro‐aerobic conditions, these two enzymes were over‐expressed in K. pneumoniae individually, and their effects on conversion of glycerol into 1,3‐propanediol in a resting cell system under micro‐aerobic conditions were investigated. RESULTS: In the resting cell system, over‐expression of 1,3‐propanediol oxidoreductase led to faster glycerol conversion and 1,3‐propanediol production. After a 12 h conversion process, it improved the yield of 1,3‐propanediol by 20.4% (222.1 mmol L−1 versus 184.4 mmol L−1) and enhanced the conversion ratio of glycerol into 1,3‐propanediol from 50.8% to 59.8% (mol mol−1). Over‐expression of glycerol dehydrogenase in K. pneumoniae had no significant influence both on 1,3‐propanediol yield and on the conversion ratio of glycerol into 1,3‐propanediol in the resting cell system. CONCLUSION: The results were important for an understanding of the significance of glycerol dehydrogenase and 1,3‐propanediol oxidoreductase in 1,3‐proanediol production under micro‐aerobic conditions, and for developing better strategies to improve 1,3‐propanediol yield. Copyright © 2008 Society of Chemical Industry  相似文献   

11.
A new coarsening model was established to describe the growth of skin droplets on a hollow‐fiber membrane prepared by liquid–liquid thermally induced phase separation. Forced air‐cooling was performed to trigger the phase separation. The heat and mass transfer processes of the skin layer are considered simultaneously. With the aid of a transfer model and data from the phase diagram, the skin cell sizes could be calculated. The effects of air velocity, air temperature, and dimensions of the hollow fiber on the skin cell sizes of the isotactic polypropylene–di‐n‐butyl phthalate–dioctyl phthalate system were investigated. The growth of the skin droplets follows an exponential relationship with time, and the exponent increases with the decrease in the polymer content. All exponents are close to 1/3. The air temperature plays less important roles on the skin cell sizes as compared with those of the air velocity and fiber dimension. Calculated values of cell sizes agree well with the experimental values. POLYM. ENG. SCI., 55:1661–1670, 2015. © 2014 Society of Plastics Engineers  相似文献   

12.
Poly(4‐methyl‐1‐pentene) (PMP) hollow fibers were prepared and fabricated into gas separation or microporous membranes by the melt‐spun and cold‐stretched method. PMP resin was melt‐extruded into hollow fibers with cold air as the cooling medium. The effects of take‐up speed and thermotreatment on the mechanical behavior and morphology of the fibers were investigated. Scanning electronic microscope (SEM) photos were used to reveal the geometric structure of the section and surface of the hollow fibers. It was found that the original fiber had an asymmetric structure. A “sandwich” mode was used to describe the formation of this special fine structure. And a series of PMP hollow‐fiber membranes were prepared by subsequent drawing, and it was found that there was a “skin–core” structure on the cross section of these hollow‐fiber membranes. Asymmetric or microporous PMP hollow‐fiber membranes could be obtained by controlling posttreatment conditions. The morphology of these membranes were characterized by SEM, and the gas (oxygen, nitrogen, and carbon dioxide) permeation properties of the membranes was measured. The results indicate that the annealing time of the original fiber and the stretching ratio were the key factors influencing the structure of the resulting membrane. © 2006 Wiley Periodicals, Inc. J Appl Polym Sci 100: 2131–2141, 2006  相似文献   

13.
Microporous high‐density polyethylene (HDPE) and low‐density polyethylene (LDPE) hollow fiber membranes were prepared from polyethylene–diisodecyl phthalate solution via thermally induced phase separation. Effect of the polyethylene density on the membrane structure and performance was investigated. The HDPE membrane showed about five times higher water permeability than the LDPE membrane because it had the larger pore and the higher porosity at the outer membrane surface. The formation of the larger pore was owing to both the initial larger structure formed by spinodal decomposition and the suppression of the diluent evaporation from the outer membrane surface due to the higher solution viscosity. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 93: 471–474, 2004  相似文献   

14.
Isotactic polypropylene (iPP) hollow fiber microporous membranes were prepared using thermally induced phase separation (TIPS) method. Di-n-butyl phthalate (DBP), dioctyl phthalate (DOP), and the mixed solvent were used as diluents. The effect of α (DOP mass fraction in diluent) on the morphology and performance of the hollow fiber was investigated. With increasing α, the morphology of the resulting hollow fiber changes from typical cellular structure to mixed structure, and then to typical particulate structure. As a result, the permeability of the hollow fiber increases sharply, and the mechanical properties of the hollow fiber decrease obviously. It is suggested that the morphology and performances of iPP hollow fiber microporous membrane can be controlled via adjusting the compatibility between iPP and diluent.  相似文献   

15.
Polysulfone (PSF) hollow fiber membranes were spun by phase‐inversion method from 29 wt % solids of 29 : 65 : 6 PSF/NMP/glycerol and 29 : 64 : 7 PSF/DMAc/glycol using 93.5 : 6.5 NMP/water and 94.5 : 5.5 DMAc/water as bore fluids, respectively, while the external coagulant was water. Polyvinyl alcohol/polysulfone (PVA/PSF) hollow fiber composite membranes were prepared after PSF hollow fiber membranes were coated using different PVA aqueous solutions, which were composed of PVA, fatty alcohol polyoxyethylene ether (AEO9), maleic acid (MAC), and water. Two coating methods (dip coating and vacuum coating) and different heat treatments were discussed. The effects of hollow fiber membrane treatment methods, membrane structures, ethanol solution temperatures, and MAC/PVA ratios on the pervaporation performance of 95 wt % ethanol/water solution were studied. Using the vacuum‐coating method, the suitable MAC/PVA ratio was 0.3 for the preparation of PVA/PSF hollow fiber composite membrane with the sponge‐like membrane structure. Its pervaporation performance was as follows: separation factor (α) was 185 while permeation flux (J) was 30g/m2·h at 50°C. Based on the experimental results, it was found that separation factor (α) of PVA/PSF composite membrane with single finger‐void membrane structure was higher than that with the sponge‐like membrane structure. Therefore, single finger‐void membrane structure as the supported membrane was more suitable than sponge‐like membrane structure for the preparation of PVA/PSF hollow fiber composite membrane. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 98: 247–254, 2005  相似文献   

16.
Outer‐selective thin‐film composite (TFC) hollow fiber membranes offer advantages like less fiber blockage in the feed stream and high packing density for industrial applications. However, outer‐selective TFC hollow fiber membranes are rarely commercially available due to the lack of effective ways to remove residual reactants from fiber's outer surface during interfacial polymerization and form a defect‐free polyamide film. A new simplified method to fabricate outer‐selective TFC membranes on tribore hollow fiber substrates is reported. Mechanically robust tribore hollow fiber substrates containing three circular‐sector channels were first prepared by spinning a P84/ethylene glycol mixed dope solution with delayed demixing at the fiber lumen. The thin wall tribore hollow fibers have a large pure water permeability up to 300 L m?2 h?1 bar?1. Outer‐selective TFC tribore hollow fiber membranes were then fabricated by interfacial polymerization with the aid of vacuum sucking to ensure the TFC layer well‐attached to the substrate. Under forward osmosis studies, the TFC tribore hollow fiber membrane exhibits a good water flux and a small flux difference between active‐to‐draw (i.e., the active layer facing the draw solution) and active‐to‐feed (i.e., the active layer facing the feed solution) modes due to the small internal concentration polarization. A hyperbranched polyglycerol was further grafted on top of the newly developed TFC tribore hollow fiber membranes for oily wastewater treatment. The membrane displays low fouling propensity and can fully recover its water flux after a simple 20‐min water wash at 0.5 bar from its lumen side, which makes the membrane preferentially suitable for oil‐water separation. © 2015 American Institute of Chemical Engineers AIChE J, 61: 4491–4501, 2015  相似文献   

17.
The phase‐separation behavior of high‐density polyethylene (HDPE)/diluent blends was monitored with a torque variation method (TVM). The torque variation of the molten blends was recorded with a rheometer. It was verified that TVM is an efficient way to detect the thermal phase behavior of a polymer–diluent system. Subsequently, polyethylene hollow‐fiber membranes were fabricated from HDPE/dodecanol/soybean oil blends via thermally induced phase separation. Hollow‐fiber membranes with a dense outer surface of spherulites were observed. Furthermore, the effects of the spinning temperature, air‐gap distance, cold drawing, and HDPE content on the morphology and gas permeability of the resultant membranes were examined. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

18.
The separation of acetylene from a gas mixture was investigated using a polytetrafluoroethylene hollow‐fiber membrane contactor and 1‐methyl‐2‐pyrrolidinone as absorbent. The effects of the gas velocity, the liquid velocity, the feed gas concentration, and the module length on the acetylene mass transfer were investigated. The results showed that the acetylene mass transfer flux increased with increasing liquid velocity, gas velocity, and feed gas concentration, but decreased with increasing membrane module length. A mathematical model was used to predict the wetting extent of the membrane and the mass transfer resistance in the acetylene mass transfer process. The wetting extent of the membrane was found to increase with increasing liquid velocity and to be effectively restrained with increasing gas velocity. The liquid phase resistance and the wetted‐membrane phase resistance controlled the acetylene mass transfer in the acetylene absorption process. The acetylene absorption efficiency was maintained at 90 % for 114 h of the C2H2 membrane absorption–thermal desorption cycle process.  相似文献   

19.
Microporous cellulose acetate membranes were prepared by a thermally induced phase separation (TIPS) process. Two kinds of cellulose acetate with acetyl content of 51 and 55 mol % and two kinds of diluents, such as 2‐methyl‐2,4‐pentandiol and 2‐ethyl‐1,3‐hexanediol, were used. In all polymer‐diluent systems, cloud points were observed, which indicated that liquid–liquid phase separation occurred during the TIPS process. The growth of droplets formed after the phase separation was followed using three cooling conditions. The obtained pore structure was isotropic, that is, the pore size did not vary across the membrane. In addition, no macrovoids were formed. These pore structures were in contrast with those usually obtained by the immersion precipitation method. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 89: 3951–3955, 2003  相似文献   

20.
With diphenyl ketone as diluent, cellulose acetate (CA) ultrafiltration (UF) membrane with a bicontinuous structure was prepared via thermally induced phase separation (TIPS) method. The liquid–liquid phase separation region of CA/diphenyl ketone system was measured and the maximum corresponding polymer concentration was approximately 53 wt %. The effects of polymer concentration, coarsening time and coarsening temperature on the morphologies, and mechanical properties of CA membranes were investigated systematically. As the polymer concentration increased from 15 to 30 wt %, the bicontinuous structure could be obtained and the tensile strength of CA membranes increased from 3.92 to 30.17 MPa. With the increase of coarsening time, the thickness of dense skin layer and the asymmetry of cross‐section reduced. However, excess coarsening rendered the membrane morphology evolved from a bicontinuous structure to a cellular structure. When the coarsening time was 5 min, the bicontinuous structure in cross‐section showed good interconnectivity and the dense skin layer exhibited a thin thickness of 2 μm. The fabricated CA hollow fiber UF membrane exhibited a high tensile strength of 31.00 MPa and rejection of 96.10% for dextran 20 kDa. It is indicated that diphenyl ketone is a competitive diluent to prepare CA membranes with excellent performance via TIPS. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2015 , 132, 42669.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号