首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Developing tissue is typically soft, highly hydrated, dynamic, and increasingly heterogeneous matter. Recapitulating such characteristics in engineered cell‐instructive materials holds the promise of maximizing the options to direct tissue formation. Accordingly, progress in the design of multiphasic hydrogel materials is expected to expand the therapeutic capabilities of tissue engineering approaches and the relevance of human 3D in vitro tissue and disease models. Recently pioneered methodologies allow for the creation of multiphasic hydrogel systems suitable to template and guide the dynamic formation of tissue‐ and organ‐specific structures across scales, in vitro and in vivo. The related approaches include the assembly of distinct gel phases, the embedding of gels in other gel materials and the patterning of preformed gel materials. Herein, the capabilities and limitations of the respective methods are summarized and discussed and their potential is highlighted with some selected examples of the recent literature. As the modularity of the related methodologies facilitates combinatorial and individualized solutions, it is envisioned that multiphasic gel‐in‐gel materials will become a versatile morphogenetic toolbox expanding the scope and the power of bioengineering technologies.  相似文献   

2.
Swelling‐agent‐free synthesis of mesocellular foam (MCF)‐like silica mesophases by a pH‐dependent structural transformation using carboxy‐terminated triblock copolymer Pluronic P123 has been discovered. The structural properties of the MCF‐like silica materials can be modulated by controlled calcination or post‐synthesis treatment with sulfuric acid, and either closed‐cell or open‐cell mesostructures have been prepared. The MCF‐like silica mesophases have also been applied as hard templates to prepare MCF‐like carbon materials via a nanocasting route. Furthermore, the swelling‐agent‐free synthesis has been found to be less sensitive to the presence of organosilanes, and the cocondensation syntheses of functional MCF‐like materials with carboxyethyl, iodopropyl, or mercaptopropyl groups have also been demonstrated.  相似文献   

3.
Lithium‐ion batteries are widely used as reliable electrochemical energy storage devices due to their high energy density and excellent cycling performance. The search for anode materials with excellent electrochemical performances remains critical to the further development of lithium‐ion batteries. Tungsten‐based materials are receiving considerable attention as promising anode materials for lithium‐ion batteries owing to their high intrinsic density and rich framework diversity. This review describes the advances of exploratory research on tungsten‐based materials (tungsten oxide, tungsten sulfide, tungsten diselenide, and their composites) in lithium‐ion batteries, including synthesis methods, microstructures, and electrochemical performance. Some personal prospects for the further development of this field are also proposed.  相似文献   

4.
Layer‐by‐Layer (LbL) assembly is a simple and highly versatile method to modify surfaces and fabricate robust and highly‐ordered nanostructured coatings over almost any type of substrate. Such versatility enables the incorporation of a plethora of building blocks, including materials exhibiting switchable properties, in a single device through a multitude of complementary intermolecular interactions. Switchable materials may undergo reversible physicochemical changes in response to a variety of external triggers. Although most of the works in the literature have been focusing on stimuli‐responsive materials that are sensitive to common triggers such as pH, ionic strength, or temperature, much less has been discussed on LbL systems which are sensitive to non‐invasive and easily controlled light stimulus, despite its unique potential. This review provides a deep overview of the recent progresses achieved in the design and fabrication of light‐responsive LbL polymeric multilayer systems, their potential future challenges and opportunities, and possible applications. Many examples are given on light‐responsive polymeric multilayer assemblies built from metal nanoparticles, functional dyes, and metal oxides. Such stimuli‐responsive functional materials, and combinations among them, may lead to novel and highly promising nanostructured smart functional systems well‐suited for a wide range of research fields, including biomedicine and biotechnology.  相似文献   

5.
The development of blue materials with good efficiency, even at high brightness, with excellent color purity, simple processing, and high thermal stability assuring adequate device lifetime is an important remaining challenge for organic light‐emitting didoes (OLEDs) in displays and lightning applications. Furthermore, these various features are typically mutually exclusive in practice. Herein, four novel green and blue light‐emitting materials based on a monothiatruxene core are reported together with their photophysical and thermal properties, and performance in solution‐processed OLEDs. The materials show excellent thermal properties with high glass transition temperatures ranging from 171 to 336 °C and decomposition temperatures from 352 to 442 °C. High external quantum efficiencies of 3.7% for a deep‐blue emitter with CIE color co‐ordinates (0.16, 0.09) and 7% for green emitter with color co‐ordinates (0.22, 0.40) are achieved at 100 cd m?2. The efficiencies observed are exceptionally high for fluorescent materials with photoluminescence quantum yields of 24% and 62%, respectively. The performance at higher brightness is very good with only 38% and 17% efficiency roll‐offs at 1000 cd m?2. The results indicate that utilization of this unique molecular design is promising for efficient deep‐blue highly stable and soluble light‐emitting materials.  相似文献   

6.
We discuss the rapid in situ hydrothermal synthesis of metal oxide materials based on the photothermal superheating of light‐absorbing metal layers for simple and facile on‐demand placement of semiconductor materials with micrometer‐scale lateral resolution. Localized heating from pulsed and focused laser illumination enables ultrafast growth of metal oxide materials with high spatiotemporal precision in aqueous precursor solution. Among many possible electronic and optoelectronic applications, the proposed method can be used for laser‐based in situ real‐time soldering of separated metal structures and electrodes with functionalized semiconductor materials. Resistive electrical interconnections of metal strip lines as well as sensitive UV detection using photohydrothermally grown metal oxide bumps are experimentally demonstrated.  相似文献   

7.
The booming development of electronics, electric vehicles, and grid storage stations has led to a high demand for advanced energy‐storage devices (ESDs) and accompanied attention to their reliability under various circumstances. Self‐healing is the ability of an organism to repair damage and restore function through its own internal vitality. Inspired by this, brilliant designs have emerged in recent years using self‐healing materials to significantly improve the lifespan, durability, and safety of ESDs. Extrinsic and intrinsic self‐healing materials and their working principles are first introduced. Then, the application of self‐healing materials in ESDs according to their self‐healing chemistry, including hydrogen bonds, electrostatic interactions, and borate ester bonds, are described in detail. Based on these, critical challenges and important future directions of self‐healing ESDs are discussed.  相似文献   

8.
DNA structures have gained much attention due to its ease of self‐assembly and precise controllability. Although DNA technology has been successfully applied to generate a variety of DNA structures, there are only few attempts to apply DNA technology to generate inorganic materials due to lack of controllability of interactions between DNA and inorganic materials. In addition, the synthesis of a predictable structure of hybrid materials still remains a significant challenge. To address the challenge, here a novel strategy for the synthesis of DNA‐based inorganic superstructures using DNA polymerase is reported. In particular, strategic feeding of metal ions for generating DNA‐inorganic hybrid superstructures during DNA polymerization is established. This approach can produce a variety of structures with varying metal ions and can easily add functionality to the product. The structural features are also easily studied by first‐principles calculations. With these advantages, DNA‐Mn particles show the potential as a cell tracking agent, a contrast agent for MRI, and an electrode material for supercapacitors. The enzyme‐driven synthesis in this study will provide a novel route for the generation of a range of organic–inorganic hybrid superstructures for biomedical and energy applications.  相似文献   

9.
Sensitized triplet–triplet annihilation based photon up‐conversion (TTA‐UC) greatly improves the scope and applicability of fluorescence bioimaging by enabling anti‐Stokes detection at low powers, thus eliminating the background autofluorescence and limiting the potential damage of the living tissues. Here the authors present a facile, one‐step protocol to prepare dual dye‐doped, TTA‐UC active nanomicelles starting from the commercially available surfactant Kolliphor EL, a component of several FDA approved preparations. These nanosized micelles show an unprecedented up‐conversion yield of 6.5% under 0.1 W cm?2 excitation intensity in an aqueous, nondeaerated dispersion. The supramolecular architecture obtained preserves the embedded dyes from oxygen quenching, allowing satisfactory anti‐Stokes fluorescence imaging of 3T3 cells. This is the first example of efficient multicomponent up‐converters prepared using highly biocompatible materials approved by the international authority, paving the way for the development of new complex and multifunctional materials for advanced theranostics.  相似文献   

10.
The refractive indices of naturally occurring materials are limited, and there exists an index gap between indices of air and available solid materials. With many photonics and electronics applications, there has been considerable effort in creating artificial materials with optical and dielectric properties similar to air while simultaneously being mechanically stable to bear load. Here, a class of ordered nanolattice materials consisting of periodic thin‐shell structures with near‐unity refractive index and high stiffness is demonstrated. Using a combination of 3D nanolithography and atomic layer deposition, these ordered nanostructured materials have reduced optical scattering and improved mechanical stability compared to existing randomly porous materials. Using ZnO and Al2O3 as the building materials, refractive indices from 1.3 down to 1.025 are achieved. The experimental data can be accurately described by Maxwell Garnett effective media theory, which can provide a guide for index design. The demonstrated low‐index, low‐scattering, and high‐stiffness materials can serve as high‐quality optical films in multilayer photonic structures, waveguides, resonators, and ultra‐low‐k dielectrics.  相似文献   

11.
Fabrication of hierarchical materials, with highly optimized features from the millimeter to the nanometer scale, is crucial for applications in diverse areas including biosensing, energy storage, photovoltaics, and tissue engineering. In the past, complex material architectures have been achieved using a combination of top‐down and bottom‐up fabrication approaches. A remaining challenge, however, is the rapid, inexpensive, and simple fabrication of such materials systems using bench‐top prototyping methods. To address this challenge, the properties of hierarchically structured electrodes are developed and investigated by combining three bench‐top techniques: top‐down electrode patterning using vinyl masks created by a computer‐aided design (CAD)‐driven cutter, thin film micro/nanostructuring using a shrinkable polymer substrate, and tunable electrodeposition of conductive materials. By combining these methods, controllable electrode arrays are created with features in three distinct length scales: 40 μm to 1 mm, 50 nm to 10 μm, and 20 nm to 2 μm. The electrical and electrochemical properties of these electrodes are analyzed and it is demonstrated that they are excellent candidates for next generation low‐cost electrochemical and electronic devices.  相似文献   

12.
White light phosphors have many potential applications such as solid‐state lighting, full color displays, light source for plant growth, and crop improvement. However, most of these phosphors are rare‐earth‐based materials which are costly and would be facing the challenge of resource issue due to the extremely low abundance of these elements on earth. A new white color composite consisted of a graphitic‐phase nitrogen carbon (g‐C3N4) treated with nitric acid and copper‐cysteamine Cu3Cl(SR)2 is reported herein. Under a single wavelength excitation at 365 nm, these two materials show a strong blue and red luminescence, respectively. It is interesting to find that the white light emission with a quantum yield of 20% can be obtained by mixing these two self‐activated luminescent materials at the weight ratio of 1:1.67. Using a 365 nm near‐ultraviolet chip for excitation, the composite produces a white light‐emitting diode that exhibits an excellent color rendering index of 94.3. These white‐emitting materials are environment friendly, easy to synthesize, and cost‐effective. More importantly, this will potentially eliminate the challenge of rare earth resources. Furthermore, a single chip is used for excitation instead of a multichip, which can greatly reduce the cost of the devices.  相似文献   

13.
Highly efficient deep‐blue fluorescent materials based on phenylquinoline–carbazole derivatives (PhQ‐CVz, MeO‐PhQ‐CVz, and CN‐PhQ‐CVz) are synthesized for organic light‐emitting diodes (OLEDs). The materials form high‐quality amorphous thin films by thermal evaporation and the energy levels can be easily adjusted by the introduction of different electron‐donating and electron‐withdrawing groups on carbazoylphenylquinoline. Non‐doped deep‐blue OLEDs that use PhQ‐CVz as the emitter show bright emission (Commission Internationale de L'Éclairage (CIE) coordinates, x = 0.156, y = 0.093) with an external quantum efficiency of 2.45%. Furthermore, the material works as an excellent host material for 4,4′‐bis(9‐ethyl‐3‐carbazovinylene)‐1,1′‐biphenyl dopant to get high‐performance OLEDs with excellent deep‐blue CIE coordinates (x = 0.155, y = 0.157), high power efficiency (5.98 lm W?1), and high external quantum efficiency (5.22%).  相似文献   

14.
Solution processing of polymer semiconductors provides a new paradigm for large‐area electronics manufacturing on flexible substrates, but it also severely restricts the realization of interesting advanced device architectures, such as lateral heterostructures with defined interfaces, which are easily accessible with inorganic materials using photolithography. This is because polymer semiconductors degrade, swell, or dissolve during conventional photoresist processing. Here a versatile, high‐resolution photolithographic method is demonstrated for patterning of polymer semiconductors and exemplify this with high‐performance p‐type and n‐type field‐effect transistors (FETs) in both bottom‐ and top‐gate architectures, as well as ambipolar light‐emitting field‐effect transistors (LEFETs), in which the recombination zone can be pinned at a photolithographically defined lateral heterojunction between two semiconducting polymers. The technique therefore enables the realization of a broad range of novel device architectures while retaining optimum materials performance.  相似文献   

15.
Ever‐increasing energy demands call for alternative energy storage technologies with balanced performance and cost characteristics to meet current and emerging applications. Dual‐ion batteries (DIBs) are considered particularly attractive owing to the potentially high specific energy, a rich variety of charge carrier combinations, and the applicability of metal‐free cathode and earth‐abundant anode materials. However, their performance falls far below expectations because of a large excess of solvent needed to dissolve electroactive species that induces side reactions and contributes parasitic weight, which penalizes the reversible capacity and cell‐level energy density. Herein, a solvent‐free DIB utilizing a binary alkali metal molten salt based on bis(fluorosulfonyl)amide as the electrolyte to solve these issues is demonstrated. The cell (NaK‐DIB) operates in a temperature range of 90–120 °C and exhibits high theoretical energy densities of 246 Wh kg?1 and 533 Wh L?1 based on active materials and capacity‐matched electrolyte, far surpassing those of reported DIBs. Further improvements could realize affordable grid‐scale energy storage.  相似文献   

16.
We investigate a new method for forming large‐area (> cm2) ordered monolayers of colloidal nanocrystal quantum dots (QDs). The QD thin films are formed in a single step by spin‐casting a mixed solution of aromatic organic materials and aliphatically capped QDs. The two different materials phase separate during solvent drying, and for a predefined set of conditions the QDs can assemble into hexagonally close‐packed crystalline domains. We demonstrate the robustness and flexibility of this phase‐separation process, as well as how the properties of the resulting films can be controlled in a precise and repeatable manner. Solution concentration, solvent ratio, QD size distribution, and QD aspect ratio affect the morphology of the cast thin‐film structure. Controlling all of these factors allows the creation of colloidal‐crystal domains that are square micrometers in size, containing tens of thousands of individual nanocrystals per grain. Such fabrication of large‐area, engineered layers of nanoscale materials brings the beneficial properties of inorganic QDs into the realm of nanotechnology. For example, this technique has already enabled significant improvements in the performance of QD light‐emitting devices.  相似文献   

17.
Traditional long‐persistent luminescence (LPL) materials, which are based on inorganic systems containing rare elements and with preparation temperatures of at least 1000 °C, exhibit afterglow times of more than 10 h and can be tuned for different applications. However, the development of this field is hindered due to the large thermal energy consumption and the need for nonrenewable resources. Thus, the development of a “green” design and preparation of LPL materials is of some importance. A doped‐crystalline material based on two metal‐free organic small molecules is easily prepared through ultrasonic crystallization at room temperature. It has a high‐quality, single‐crystalline structure, and visible LPL performance with a duration of more than 6 s upon low‐energy photoexcitation. A green, flexible, and convenient screen‐printing technology for controllable pattern anticounterfeiting is then developed from this purely organic material, which improves the prospects for commercial utilization in the future.  相似文献   

18.
Herein, the novel concept of a solid‐state electrode materials with ionic‐liquid (IL) properties is presented. These composite materials are a mixture of electroactive matter, an electronic conductor, a solid‐state ionic conductor and a polymeric binder. The approach of a solid‐state ionic conductor combines the high safety of an IL with the nanoconfinement of such a liquid in a mesoporous silica framework, an ionogel, thus leading to a solid with liquid‐like ionic properties. The same ionic conductor is also used as a solid‐state separator to evaluate the properties of our solid‐state electrode materials in all‐solid‐state batteries. Such a concept of a solid‐state electrode material contributes to addressing the challenge of energy storage, which is one of the major challenges of the 21st century. The ionogel, along with its processability, allows a single‐step preparation of the assembly of the solid‐state electrode and solid‐electrolyte separator and can be applied without specific adaptation to present, thick electrodes prepared by the widespread tape‐casting technique. The filling of the electrode porosity by an ionogel is shown by elemental mapping using scanning electron microscopy, and is subsequently confirmed by electrochemical measurements. The ionogel approach is successfully applied without specific adaptation to two state‐of‐the‐art, positive electroactive materials developed for future‐generation lithium‐ion batteries, namely LiFePO4 and LiNi1/3Mn1/3Co1/3O2.  相似文献   

19.
Triboelectric nanogenerators (TENG) are a possible power source for wearable electronics, but the conventional electrode materials for TENG are metals such as Cu and Al that are easy to be oxidized or corroded in some harsh environments. In this paper, metal electrode material is replaced by an electrical conducting polymer, polypyrrole (PPy), for the first time. Moreover, by utilizing PPy with micro/nanostructured surface as the triboelectric layer, the charge density generated is significantly improved, more superior to that of TENG with metals as the triboelectric layer. As this polymer‐based TENG is further integrated with PPy‐based supercapacitors, an all‐plastic‐materials based self‐charging power system is built to provide sustainable power with excellent long cycling life. Since the environmental friendly materials are adopted and the facile electrochemical deposition technique is applied, the new self‐charging power system can be a practical and low cost power solution for many applications.  相似文献   

20.
A way to obtain macroscopic responsive materials from silicon‐oxide polymer core/shell microstructures is presented. The microparticles are composed of a 60 nm SiO2‐core with a random copolymer corona of the temperature responsive poly‐N‐isopropylacrylamide (PNIPAAm) and the UV‐cross‐linkable 2‐(dimethyl maleinimido)‐N‐ethyl‐acrylamide. The particles shrink upon heating and form a stable gel in both water and tetrahydrofuran (THF) at 3–5 wt% particle content. Cross‐linking the aqueous gel results in shrinkage when the temperature is increased above the lower critical solution temperature and it regains its original size upon cooling. By freeze drying with subsequent UV irradiation, thin stable layers are prepared. Stable fibers are produced by extruding a THF gel into water and subsequent UV irradiation, harnessing the cononsolvency effect of PNIPAAm in water/THF mixtures. The temperature responsiveness translates to the macroscopic materials as both films and fibers show the same collapsing behavior as the microcore/shell particle. The collapse and re‐swelling of the materials is related to the expelling and re‐uptake of water, which is used to incorporate gold nanoparticles into the materials by a simple heating/cooling cycle. This allows for future applications, as various functional particles (antibacterial, fluorescence, catalysis, etc.) can easily be incorporated in these systems.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号