首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
This work investigates mechanical properties of styrene‐butadiene rubber (SBR) composites incorporating magadiite (MGD), a synthetic layered silicate (Na2Si14O29·9H2O) with surface chemistry similar to precipitated silica used in tire tread formulations. Treatment with cetyltrimethylammonium (CTA+) expands the MGD layers and makes the interlayer face surfaces accessible to sulfur‐functional silane TESPT (Si69) and SBR, primarily during batch mixing. DMA and tensile testing of cured CMGD/SBR composites show that CTA‐treated MGD (CMGD) provides substantially higher levels of mechanical reinforcement than equivalent amounts of silica. However, CMGD/SBR composites exhibit larger loss tangent values above Tg, probably due to lower SBR‐SBR crosslink density resulting from interlayer trapping of sulfur released by Si69 during vulcanization. DMA and tensile testing also demonstrate Si69′s critical role in forming MGD‐SBR graft sites essential to mechanical reinforcement. Replacing silica with CMGD reduces composite weight without sacrificing tensile modulus, suggesting that use of CMGD in tire rubber formulations could improve vehicle energy efficiency. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44763.  相似文献   

2.
Since silica has strong filler–filler interactions and adsorbs polar materials, a silica‐filled rubber compound has a poor dispersion of the filler and poor cure characteristics. Improvement of the properties of silica‐filled styrene–butadiene rubber (SBR) compounds was studied using acrylonitrile–butadiene rubber (NBR). Viscosities and bound rubber contents of the compounds became lower by adding NBR to the compound. Cure characteristics of the compounds were improved by adding NBR. Physical properties such as modulus, tensile strength, heat buildup, abrasion, and crack resistance were also improved by adding NBR. Both wet traction and rolling resistance of the vulcanizates containing NBR were better than were those of the vulcanizate without NBR. The NBR effects in the silica‐filled SBR compounds were compared with the carbon black‐filled compounds. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 79: 1127–1133, 2001  相似文献   

3.
A novel block mercaptosilane (3‐benzothiazolthio‐1‐propyltriethoxylsilane) (Silane‐M) was synthesized and characterized by Fourier transform infrared spectra, 1H nuclear magnetic resonance, and elemental analysis. Styrene–butadiene rubber (SBR)/silica composites were prepared with Silane‐M, and its effect on the properties of materials was studied. Results show that Silane‐M can substantially improve the dispersion of silica and strengthen the reinforcement of silica for SBR vulcanizates like anchors of silica to rubber matrix. As expected, it enhances the tensile, tear strength, dynamic compression property, and resistance to abrasion of SBR/silica composites. By adding Silane‐M into the system, SBR/silica composites get superior skid resistance and high glass transition temperature (Tg). © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

4.
Maleated glycidyl 3‐pentadecenyl phenyl ether (M‐GPPE) was synthesized from glycidyl 3‐pentadecenyl phenyl ether (GPPE), a renewable derivative from cardanol, with maleic anhydride (MAH) by grafting copolymerization. The resulting M‐GPPE was used as a functionalized plasticizer for a styrene–butadiene rubber (SBR)/carbon black (CB)/silica composite. The effects of M‐GPPE on the development of the filler network, the extent of silica dispersion, the curing characteristics, and the mechanical performance of the composites were studied. Meanwhile, a comparative study was performed between M‐GPPE and aromatic oil, a traditional plasticizer used in SBR filler formulations. Gel permeation chromatography and IR and 1H‐NMR analysis results confirmed the occurrence of the grafting reaction between GPPE and MAH and the potential structure of M‐GPPE. The thermostability of GPPE was improved by grafting copolymerization with MAH, as shown by thermogravimetric analysis results. The presence of M‐GPPE resulted in a shorter curing time and better aging properties in the SBR composite compared with GPPE. The mechanical properties, dynamic mechanical analysis, and transmission electron microscopy analysis showed that the maleate of GPPE could enhance the compatibility between SBR and silica, improve the dispersion of silica in SBR, and partially replace the aromatic oil in the SBR/CB/silica composite formulation. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40462.  相似文献   

5.
The wear resistance of zinc oxide whisker (ZnOw)/natural rubber‐styrene butadiene rubber‐butyl rubber (NR‐SBR‐BR) composites showed that a tetra‐needle like ZnOw, which is treated by a coupling agent, improved the wear resistance of the rubber composites. The topography of the worn surfaces of the ZnOw/NR‐SBR‐BR composites was fractal, and the fractal dimension and abrasion loss decreased synchronously as the ZnOw content increased in the composites. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 667–670, 2003  相似文献   

6.
Incorporation of silica into styrene butadiene rubber (SBR)–reclaim rubber (RR) blend system was carried out by sol–gel technique and conventional method. A well known silica coupling agent bis(3‐triethoxysilyl propyl) tetrasulfide was found to affect the curing characteristics and mechanical properties of SBR/RR vulcanizate. Here, the effect of RR on silica reinforcement was studied for different SBR/RR blend system. Silica incorporation by conventional mechanical mixing in absence of TESPT showed a much higher tensile properties than that of silica incorporated by the in situ sol–gel reaction of tetraethoxy silane both in presence and absence of TESPT. Studies of equilibrium swelling in a hydrocarbon solvent were also carried out. ATR study indicates that RR forms bond with silica particles due to the presence of active functional site on RR. The amount of silica incorporated by sol–gel reaction was determined through thermogravimetric analysis (TGA). Scanning electron microscopy (SEM) studies further indicate the coherency and homogeneity in the silica filled SBR/RR vulcanizate. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 957–968, 2006  相似文献   

7.
Hybrid materials were synthesized from epoxidized (68, 43, or 14%) styrene–butadiene rubber (SBR) and the hydrolysis product of tetraethoxysilane (TEOS) in situ under ultrasonic irradiation. The products were characterized with thermal analysis (differential scanning calorimetry and thermogravimetric analysis), stress–strain tests, scanning electron microscopy (including energy‐dispersive spectrometry), and swelling in tetrahydrofuran and water. The most transparent were those prepared from SBR with the highest degree of epoxidation, whereas those obtained from less epoxidized SBR and with larger amounts of TEOS showed distinct phases that could be considered two hybrid phases (one rich in TEOS and another rich in SBR). © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 92: 798–803, 2004  相似文献   

8.
The dynamic properties, including the dynamic mechanical properties, flex fatigue properties, dynamic compression properties, and rolling loss properties, of star‐shaped solution‐polymerized styrene–butadiene rubber (SSBR) and organically modified nanosilica powder/star‐shaped styrene–butadiene rubber cocoagulated rubber (N‐SSBR), both filled with silica/carbon black (CB), were studied. N‐SSBR was characterized by 1H‐NMR, gel permeation chromatography, energy dispersive spectrometry, and transmission electron microscopy. The results show that the silica particles were homogeneously dispersed in the N‐SSBR matrix. In addition, the N‐SSBR/SiO2/CB–rubber compounds' high bound rubber contents implied good filler–polymer interactions. Compared with SSBR filled with silica/CB, the N‐SSBR filled with these fillers exhibited better flex fatigue resistance and a lower Payne effect, internal friction loss, compression permanent set, compression heat buildup, and power loss. The nanocomposites with excellent flex fatigue resistance showed several characteristics of branched, thick, rough, homogeneously distributed cross‐sectional cracks, tortuous flex crack paths, few stress concentration points, and obscure interfaces with the matrix. Accordingly, N‐SSBR would be an ideal matrix for applications in the tread of green tires. © 2014 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 40348.  相似文献   

9.
Rheological behaviour and cure characteristics of silica‐filled styrene–butadiene rubber (SBR) compounds and SBR compounds filled with both silica and carbon black with different silica contents were investigated. Rheocurves of the time versus the torque of the compounds showed specific trends with the silica content. For the compounds with low silica content (less than 50 phr), the torque decreased immediately after the steep increase at the initial point of the rheocurve and then increased very slowly. For the compounds with high silica content (more than 50 phr), the rheographs showed two minimum torque points; the torque decreased immediately after the steep increase at the start point of the rheocurve and then increased sharply before reaching the second minimum point. This can be explained by the strong filler–filler interaction of silica. The minimum torque of the compound increased slightly with an increase of the silica content up to 50 phr silica content and then increased appreciably. For the silica‐filled compounds, cure times of the t02, t40, and t90 became shorter with an increase of the filler content. For the compounds filled with both silica and carbon black (total filler content of 80 phr), the cure times became longer with an increase of the silica content ratio. © 2001 Society of Chemical Industry  相似文献   

10.
Silica is introduced in butadiene rubber (BR) in situ by solution sol–gel method at low and high content. This results in uniformly dispersed spherically shaped silica in rubber matrix as revealed from Scanning electron microscopy study. Incorporation of in situ silica imparts moderate reinforcement to BR composite. Mechanical property and silica distribution are eventually improved by using a silane coupling agent as a surface modifier. Thermal, rheological, morphological, mechanical and melting behaviours of the composites are evaluated and analysed in a comparative manner.  相似文献   

11.
Silica has been established as one of the most promising materials in green tires. The filler–rubber interactions can increase the comprehensive performance of rubber composites. In this study, sodium silicate was used as the silicon source and hexamethyl disilazane (HMDS; molecular formula: C6H19NSi2) was used as a modifier to synthesize dispersible silica (DNS) via an in situ surface-modification method. The effects of the HMDS-capped silica on the properties of rubber–matrix composites made of styrene–butadiene rubber (SBR) and high-cis-polybutadiene rubber (BR9000 or BR) were investigated with Zeosil 1165MP (Z1165-MP; a commercial highly dispersible silica produced by Rhodia for the production of green tires in the rubber industry) as a reference. The results show that the SBR–BR–DNS composite was before the SBR–BR–Z1165-MP composite in increasing the tear strength and elongation at break and reducing the compression heat buildup. On the basis of the resulting properties, the reinforcing behaviors in the rubber–matrix composites were analyzed. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47763.  相似文献   

12.
Poly(styrene‐co‐butadiene) rubber (SBR) and polybutadiene rubber (BR)/clay nanocomposites have been prepared. The effects of the incorporation of inorganically and organically modified clays on the vulcanization reactions of SBR and BR were analysed by rheometry and differential scanning calorimetry. A reduction in scorch time (ts1) and optimum time (t95) was observed for both the rubbers when organoclay was added and this was attributed to the amine groups of the organic modifier. However, ts1 and t95 were further increased as the clay content was increased. A reduction in torque value was obtained for the organoclay nanocomposites, indicating a lower number of crosslinks formed. The organoclays favoured the vulcanization process although the vulcanizing effect was reduced with increasing clay content. The tensile strength and elongation of SBR were improved significantly with organoclay. The improvement of the tensile properties of BR with organoclay was less noticeable than inorganic‐modified clay. Nevertheless, these mechanical properties were enhanced with addition of clay. The mechanical properties of the nanocomposites were dependent on filler size and dispersion, and also compatibility between fillers and the rubber matrix. Copyright © 2004 Society of Chemical Industry  相似文献   

13.
In this study, the reinforcement performance of the modified silicas prepared through the incorporation of 3‐aminopropyltriethoxy silane (AP) and further reaction of bisphenol A diglycidyl ether (BG) to styrene‐butadiene/butadiene rubber (SBR/BR) compounds was investigated to discuss the effect of surface and networked states on the properties of silica‐filled rubber compounds. The adjustment of the ratio of BG to AP varied the surface and networked states of silica. The amino and glycidyl groups dispersed on the silica and the networks formed on/between silica particles considerably influenced the properties of SBR/BR compounds reinforced with the modified silicas. The presence of amino group increased viscosity of the rubber compounds due to the attrition between rubber chains and silica particles, while the entanglement of rubber chains with the networks successfully improve both wet traction and rolling resistance, without sacrificing the fundamental properties of the rubber compounds, even though no coupling agents were applied. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44893.  相似文献   

14.
Because silica has strong filler‐filler interactions and adsorbs polar materials, a silica‐filled rubber compound exhibits poor dispersion of the filler and poor cure characteristics in comparison with those of a carbon black‐filled rubber compound. Acrylonitrile‐butadiene rubber (NBR) improves filler dispersion in silica‐filled styrene‐butadiene rubber (SBR) compounds. The influence of the NBR type on the properties of silica‐filled SBR compounds containing NBR was studied with NBRs of various acrylonitrile contents. The composition of the bound rubber was different from that of the compounded rubber. The NBR content of the bound rubber was higher than that of the compounded rubber; this became clearer for NBR with a higher acrylonitrile content. The Mooney scorch time and cure rate became faster as the acrylonitrile content in NBR increased. The modulus increased with an increase in the acrylonitrile content of NBR because the crosslink density increased. The experimental results could be explained by interactions of the nitrile group of NBR with silica. © 2002 Wiley Periodicals, Inc. J Appl Polym Sci 85: 385–393, 2002  相似文献   

15.
The aggregation structure of lignin in aqueous solution had an important effect on the dispersion of lignin and the properties of lignin/styrene–butadiene rubber (SBR) composites. This article revealed the relationship between aggregation structure and chemical structure of modified lignin. Unmodified lignin was amorphous; however, our results showed that aldehyde‐modified lignin was transformed into spherical aggregates, while propylene‐oxide‐modified lignin self‐aggregated into supramolecular domains. The relationships between aggregation structure, filler dispersion, filler–rubber interaction, and performance were also studied by investigating the microstructure, viscoelastic behavior, and mechanical properties of lignin/SBR composites. Meanwhile, a solution to improve the coprecipitation efficiency of lignin and SBR latex was proposed. In this article, epoxidized natural rubber (ENR) was also used as compatibilizer to improve the interfacial adhesion between polar lignin and nonpolar SBR. The results showed better lignin dispersion for the ENR‐containing rubber composites, as well as superior wet skid resistance and lower rolling resistance. © 2017 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2018 , 135, 45759.  相似文献   

16.
Blending of hydroxyl-terminated liquid butadiene rubber (HT-BR) with 1-chlorobutadiene–butadiene rubber (CB–BR) was carried out in the presence of isopropylidenedicyclohexyl diisocianate (IPCI) or sulfur as a curing agent, It was found that the HT-BR/CB–BR blend displayed a good plasticity, i.e., its Mooney viscosity became lower than that of CB–BR, which brought abcut a good processability. The HT-BR fraction (Es from the HT-BR/CB–BR blend vulcanizates, which was prepared by the IPCI-cured system, was evaluated to be ca. 20% by the equilibium swelling test in benzene. The Es of the sulfur-cured blend was ca. 70% This result shows that HT-BR acted as a reactive softener when it was compounded with CB–BR by curing with the diisocyanate. The tensile strength of the IPCI vulcanizate was exceedingly higher than that of sulfur-cured vulcanizate at all blend raios of HT-BR to CB–BR. © 1996 John Wiley & Sons, Inc.  相似文献   

17.
Two miktoarm star‐shaped rubbers with large‐volume functional groups of 1,1‐diphenylhexyl at the ends of arms (DMS–PB–SBR) and one miktoarm star‐shaped rubber with n‐butyl groups at the ends of arms (BMS–PB–SBR) were prepared by 1,1‐diphenylhexyllithium (DPHLi) and n‐butyl lithium as initiators, respectively. The molecular structures and morphological properties of the three rubbers (MS–PB–SBR) were studied and compared with those acquired from the blend consisting of star‐shaped solution‐polymerized butadiene styrene rubber (S‐SSBR) and butadiene rubber (PBR) prepared by ourselves. The results showed that MS–PB–SBR exhibited a more uniform distribution of PBR phase and a smaller phase size of PBR than that of S‐SSBR/PBR blend. It is found that MS–PB–SBR composites filled with CB showed the lower Payne effect than that of S‐SSBR/PBR/CB composite, suggesting that the MS–PB–SBR/CB composite (particularly the DMS–PB–SBR/CB composites) would possess excellent mechanical properties, high wet‐skid resistance, and low rolling resistance. For the studied MS–PB–SBR systems, the contribution of large‐volume functional groups at the end of PBR molecular chains to decrease the rolling resistance was larger than that of Sn coupling effect. It is envisioned that the miktoarm star‐shaped rubbers with 1,1‐diphenylhexyl groups at the molecular ends would be useful for making treads of green tires. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2014 , 131, 40002.  相似文献   

18.
A solid‐phase preparation method is applied to the synthesis of a novel supported rubber antioxidant, silica–supported 2,2′‐methylenebis(6‐tert‐butyl‐4‐methyl‐phenol) (SiO2‐2246), by directly reacting 2,2′‐methylenebis (6‐tert‐butyl‐4‐methyl‐phenol)(antioxidant 2246) with silica. FTIR, Raman spectroscopy and TGA confirm that the antioxidant 2246 is chemically bonded on the surface of the silica particles. The SEM observation shows that the SiO2‐2246 is homogeneously dispersed in the styrene‐butadiene rubber (SBR) matrix. The results of the apparent activation energy and the attenuated total reflectance infrared spectrometry indicate that the antioxidative efficiency of the SiO2‐2246 in SBR is superior to the corresponding low‐molecular‐weight 2246. The thermal oxidative stability of the SBR/SiO2‐2246 composites is much higher than that of the SBR/SiO2/2246 composites by comparing their mechanical properties retentions and crosslinking densities. Additionally, the advantages of SiO2‐2246 also include low migration, low volatility, and low pollution. © 2015 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2016 , 133, 43014.  相似文献   

19.
The stress relaxation of silica (SiO2) filled solution‐polymerized styrene–butadiene rubber (SSBR) has been investigated at shear strains located in the nonlinear viscoelastic regions. When the characteristic separability times are exceeded, the nonlinear shear relaxation modulus can be factorized into separate strain‐ and time‐dependent functions. Moreover, the shear strain dependence of the damping function becomes strong with an increase in the SiO2 volume fraction. On the other hand, a strain amplification factor related to nondeformable SiO2 particles can be applied to account for the local strain of the rubbery matrix. Furthermore, it is believed that the damping function is a function of the localized deformation of the rubbery matrix independent of the SiO2 content. The fact that the time–strain separability holds for both the unfilled SSBR and the filled compound indicates that the nonlinear relaxation is dominated by the rubbery matrix, and this implies that the presence of the particles can hardly qualitatively modify the dynamics of the polymer. It is thought that the filler–rubber interaction induces a coexistence of the filler network with the entanglement network of the rubbery phase, both being responsible for the nonlinear relaxation. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

20.
Four oil absorbents based on styrene–butadiene (SBR)—pure SBR (PS), 4‐tert‐butylstyrene–SBR (PBS), EPDM–SBR network (PES), and 4‐tert‐butylstyrene‐EPDM‐SBR (PBES)—were produced from crosslinking polymerization of uncured styrene–butadiene rubber (SBR), 4‐tert‐butylstyrene (tBS), and ethylene–propylene–diene terpolymer (EPDM). The reaction took place in toluene using benzoyl peroxide (BPO) as an initiator. Uncured SBR was used as both a prepolymer and a crosslink agent in this work, and the crosslinked polymer was identified by IR spectroscopy. The oil absorbency of the crosslinked polymer was evaluated with ASTM method F726‐81. The order of maximum oil absorbency was PBES > PBS > PES > PS. The maximum values of oil absorbency of PBES and PBS were 74.0 and 69.5 g/g, respectively. Gel fractions and swelling kinetic constants, however, had opposite sequences. The swelling kinetic constant of PS evaluated by an experimental equation was 49.97 × 10?2 h?1. The gel strength parameter, S, the relaxation exponent, n, and the fractal dimension, df, of the crosslinked polymer at the pseudo‐critical gel state were determined from oscillatory shear measurements by a dynamic rheometer. The morphologies and light resistance properties of the crosslinked polymers were observed, respectively, with a scanning electron microscope (SEM) and a color difference meter.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号