首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
In view of the complexity of surface photografting polymerization of vinyl acetate/maleic anhydride (VAC/MAH) binary monomer systems, a novel method was adopted in the present article to obtain insight into the relevant grafting copolymerization mechanism. This method includes two steps: semibenzopinacol dormant groups were first introduced onto LDPE film by UV‐irradiation and then thermally reactivated to produce LDPE macromolecular free radicals, which initiated the grafting copolymerization of VAC and MAH. It was demonstrated that, in the first step, the solvent used to introduce benzophenone (BP) to LDPE film largely affected the subsequent grafting copolymerization, which was closely related to the affinity of the solvent toward the substrate. The monomer feed composition had considerable influence on both the grafting and nongrafting copolymerization; however, the maximum copolymerization rates did not appear in the polymerization system with [VAC]/[MAH] being 1 : 1, but, in the system with a bit more VAC than MAH, as the total monomer concentration was raised, the maximum copolymerization rates tended to appear in the system with [VAC] equal to [MAH]. The relationship between the total copolymerization rate (RP) and monomer concentration was determined to be LnRP ∝ [VAC + MAH]1.83. All of these results indicated that both charge transfer (CT) complex formed by VAC and MAH and free monomers took part in grafting copolymerization. This feature differentiated the surface grafting copolymerization of VAC/MAH from the well‐studied thermally induced alternating copolymerization of VAC/MAH. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci, 2006  相似文献   

2.
In previous studies, the photografting polymerization of vinyl acetate (VAC) and maleic anhydride (MAH) was investigated systematically. After that, to increase the grafting rate and efficiency and make the project more practicable, a VAC–MAH binary monomer system was employed for simultaneous photografting onto the surface of low‐density polyethylene film. The effects of several crucial factors, including the composition and total concentration of the monomer solution and different types of photoinitiators and solvents, on the grafting polymerization were investigated in detail. The conversion percentage (CP), grafting efficiency (GE), and grafting percentage were measured by gravimetry. The results showed that the monomer composition played a big part in this binary system; appropriately increasing the content of MAH in the monomer feed was suited for grafting polymerization. The growth of the total monomer concentration, however, made the copolymerization faster and was unfavorable for grafting polymerization. The three photoinitiators—2,2‐dimethoxy‐2‐phenylacetophenone (Irgacure 651), benzoyl peroxide, and benzophenone (BP)—led to only slight differences in CP, but for GE, BP was the most suitable. As for the different solvents—acetone, ethyl acetate, tetrahydrofuran (THF), and chloroform—using those able to donate electrons (acetone and THF) resulted in relatively higher CPs; on the contrary, the use of the other solvents made GE obviously higher, and this should be attributed to the charge‐transfer complex (CTC) that formed in this system. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 95: 903–909, 2005  相似文献   

3.
In general, it has been accepted that maleic anhydride (MAH) cannot be homopolymerized under normal conditions. However, MAH can be grafted onto substrates under UV irradiation rather easily. In this study, the photografting polymerization of MAH was examined with low‐density polyethylene (LDPE) film as a substrate. The initiating performances of different photoinitiators, including benzophenone (BP), Irgacure 651, and benzoyl peroxide (BPO), were examined. The effects of some principal factors, such as the temperature, solvent, and UV intensity, on the grafting polymerization of MAH were also investigated. The results show that MAH can be smoothly grafted onto LDPE film by UV radiation. Enhancing the intensity of UV radiation and elevating the irradiation temperature facilitate the grafting polymerization of MAH. Among BP, Irgacure 651, and BPO, Irgacure 651 can initiate the polymerization of more MAH, but BP is more effective for the initiation of surface grafting polymerization. Solvents of MAH also have a great influence on the grafting polymerization; some of them even seem to take part in the reaction. The occurrence of photografting polymerization was verified with Fourier transform infrared and electron spectroscopy for chemical analysis spectra. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 87: 2318–2325, 2003  相似文献   

4.
Photografting of vinyl acetate (VAc) onto LDPE films was carried out with lamination technology and simultaneous method, using BP as photoinitiator. Some principal factors affecting the grafting polymerization were investigated in detail. The experimental results showed that oxygen dissolved in monomer solution had great influence on grafting polymerization. Compared with other routine monomers (St, MMA, AN, AA, and AAm), VAc exhibited higher photografting reactivity. It was observed that the reaction temperature affected the graft polymerization markedly. To film samples with a given diameter, there exists optimum thickness of monomer solution. Adding a pertinent amount of water to the photografting polymerization system could accelerate the polymerization. © 2000 John Wiley & Sons, Inc. J Appl Polym Sci 77: 1513–1521, 2000  相似文献   

5.
The feasibility of potassium permanganate to induce graft polymerization of vinyl monomers onto nylon 6 was investigated. The graft yield is greatly enhanced by increasing the monomer concentration, reaction time, and temperature. The addition of metallic ions as promoters to the grafting medium accelerates the graft polymerization. A mechanism for grafting was proposed. The activation energy of initiation Ei for methyl methacrylate was calculated and found to be 5 kcal/mole. The overall rate of graft polymerization Rp depends on the monomer concentration.  相似文献   

6.
Two latex interpenetrating polymer networks (LIPNs) were synthesized with methyl methacrylate (MMA) and octyl acrylate (OA) as monomers, respectively. The apparent kinetics of polymerization for the LIPNs was studied. This demonstrates that network II does not have a nucleus formation stage. The monomers of network II were diffused into the latex particles of network I and then formed network II by in situ polymerization. It indicates that the polymerization of network I obeys the classical kinetic rules of emulsion polymerization. But the polymerization of network II only appears a constant‐rate stage and a decreasing‐rate stage. The apparent activation energies (Ea) of network I and network II of PMMA/POA were calculated according to the Arrhenius equation. The Ea values of POA as network I (62 kJ/mol) is similar to that of POA as network II PMMA/POA (60 kJ/mol). However, the Ea value of PMMA as network II POA/PMMA (105kJ/mol) is higher than that of PMMA as network I (61 kJ/mol). Results show that the Ea value of the network II polymerization is related to the properties of its seed latex. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

7.
RAFT polymerization of N‐vinyl pyrrolidone (NVP) has been investigated in the presence of chain transfer agent (CTA), i.e., prop‐2‐ynyl morpholine‐4‐carbodithioate (PMDC). The influence of reaction parameters such as monomer concentration [NVP], molar ratio of [CTA]/[AIBN, i.e., 2,2′‐azobis (2‐methylpropionitrile)] and [NVP]/[CTA], and temperature have been studied with regard to time and conversion limit. This study evidences the parameters leading to an excellent control of molecular weight and molar mass dispersity. NVP has been polymerized by maintaining molar ratio [NVP]: [PMDC]: [AIBN] = 100 : 1 : 0.2. Kinetics of the reaction was strongly influenced by both temperature and [CTA]/[AIBN] ratio and to a lesser extent by monomer concentration. The activation energy (Ea = 31.02 kJ mol?1) and enthalpy of activation (ΔH?= 28.29 kJ mol?1) was in a good agreement to each other. The negative entropy of activation (ΔS? = ?210.16 J mol‐1K‐1) shows that the movement of reactants are highly restricted at transition state during polymerization. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

8.
N‐(4‐Hydroxy phenyl) maleimide (HPMI) is prepared and is functionalized with acryloyl, methacryloyl, allyl, propargyl, and cyanate groups. The structural and thermal characterizations of the materials are done using FTIR, NMR, DSC, and TGA. Curing and degradation kinetics are performed using Flynn–Wall–Ozawa, Vyazovkin, and Friedman methods. Activation energies (Ea) for the polymerization of the synthesized monomers varied and are dependent on the nature of the functional group present in HPMI. The propargyl functionalized monomer shows the highest Ea values whereas the methacryloyl functionalized monomer shows the lowest Ea values. In the case of thermal degradation of the polymerized materials, the apparent Ea values for acryloyl, methacryloyl and cyanate functionalized materials are slightly higher than that of poly‐HPMI (PHPMI). The thermally cured allyl and propargyl functionalized materials show a different trend and may be attributed to the complications arising due to Claisen rearrangement reaction during the thermal curing. © 2013 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2014 , 131, 39935.  相似文献   

9.
The influence of 1‐decene as the second monomer on the melt‐grafting behavior of maleic anhydride (MAH) onto polypropylene (PP) was studied with differential scanning calorimetry and Fourier transform infrared spectroscopy. We found that the value of the grafting degree increased from 0.68% for pure MAH‐g‐PP to 1.43% for the system with a 1‐decene/MAH molar ratio of 0.3, whereas the maximum value with styrene (St) as the second monomer was 0.98% under an St/MAH molar ratio of 1.0. Compared with the contribution of St/MAH‐g‐PP to the peeling strength between the PP and polyamide (PA) layer for a PP/PA laminated film, the introduction of 1‐decene/MAH‐g‐PP increased the peeling strength from 180 g/15 mm to 250 g/15 mm. 1‐Decene inhibited the chain scission behavior of PP. 1‐Decene reacted with MAH to form a 1‐decene/MAH copolymer or the Alder‐ene reaction product before the two monomers grafted onto PP. The grafting of the reactive product onto PP greatly improved the grafting degree of MAH. What is more, because of the similar chemical structures of 1‐decene and PP, the affinity of 1‐decene with PP was higher than that of St. Compared with St, the introduction of less 1‐decene led to a higher grafting degree and higher peeling strength. Therefore, we concluded that 1‐decene was more effective for improving the grafting degree of MAH onto PP. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

10.
Cationic polyacrylamide‐grafted starch (St‐g‐CPAM) flocculant was prepared by using corn starch and acrylamide (AM) as monomers, dimethyl diallyl ammonium chloride (DMDAAC) as cationic monomer through solution polymerization. The effects of initiator, reaction temperature, and monomer concentration on flocculation, the efficiency of grafting, and the yield of grafting were investigated. The results show that the optimal conditions of the polymerization are as follows: the concentration of ceric ammonium nitrate is 0.5%, the reaction temperature is 60°C, the concentration of total monomer is 20%, and the monomer ratio between AM and DMDAAC is 7 : 3. The flocculation capability was characterized by turbidity reduction. The thermal behavior, chemical structure, and microstructure of St‐g‐CPAM were also investigated by thermal gravimetric, IR, and SEM analyses. © 2011 Wiley Periodicals, Inc. J Appl Polym Sci, 2011  相似文献   

11.
A kind of polymerizable surfactant, methacryloyloxyethylhexadecyldimethylammonium bromide (DMHB) was used to synthesis soap‐free cationic emulsion with styrene (St), methyl methacrylate (MMA), and methacryloyloxyethyltrimethylammonium chloride (MATMAC) by emulsion polymerization using 2,2′‐azobis(isobutylamidine hydrochloride) (AIBA) as a cationic initiator. The effects of polymerizable surfactant concentration, initiator concentration, and reaction temperature on the conversion of monomer were investigated. The results indicated that the rate of polymerization could be expressed as Rp = kp[AIBA]0.42[DMHB]0.45 and the apparent activation energy (Ea) was 83.42 kJ/mol. The particle size, ζ potential, and apparent charge density of cationic latices were also measured. The average diameter of copolymer particles decreased with increasing DMHB, MATMAC, and AIBA content; the charge properties of the particles were decided by the DMHB, MATMAC, and AIBA content. The polymerization mechanism is discussed. © 2005 Wiley Periodicals, Inc. J Appl Polym Sci 99: 1111–1116, 2006  相似文献   

12.
To take advantage of the property of supercritical carbon dioxide as both a solvent and swelling agent, the bulk grafting of poly(styrene‐alt‐maleic anhydride) [P(MAH‐alt‐St)] onto preirradiated polyolefin membranes was performed by a combination of γ‐ray‐preirradiation‐induced graft copolymerization and supercritical fluid‐swollen polymerization. The trapped radicals on the polyolefin backbones were uniformly distributed by γ‐ray irradiation under a nitrogen atmosphere. Subsequently, these polymeric trapped radicals initiated the alternating copolymerization of styrene (St) and maleic anhydride (MAH) infused into the swollen polymer matrix with the aid of supercritical CO2. It was important that the graft copolymers were relatively pure without any contaminants, including homopolymers, monomers, and initiators. The experimental results show that the degree of grafting could be easily controlled. In addition, St/MAH could synergistically promote the bulk grafting process and strongly effect on the alternating trend; this was confirmed by element analysis and differential scanning calorimetry. Soxhlet extraction, X‐ray diffraction, and Fourier transform infrared spectroscopy indicated that the P(MAH‐alt‐St) was covalently bonded to the polymeric backbones. Scanning electron microscopy showed that the alternating graft chains were uniformly dispersed throughout the 5‐mm thickness of the polymer membranes on the nanometer scale. © 2012 Wiley Periodicals, Inc. J. Appl. Polym. Sci., 2013  相似文献   

13.
The in situ polymerization of glycidyl methacrylate in wood, in the presence of uranyl nitrate, (UN), and/or 2,2′-azo-bis-isobutyronitrile, (AIBN), has been investigated in the temperature range 55°-72°C. The course of the polymerization reaction was followed by measurement of tan 5 in an automated Rheovibron viscoelastometer. The kinetics, studied by applying the Guggenheim method to the data, showed the polymerization to be first order whether catalyzed by UN or initiated by AIBN. The activation energy (Eα) for AIBN-initiated polymerization was 121 kJ/mol, and was unaffected by varying monomer concentration in acetone. On the other hand, Eα for the UN-catalyzed polymerization was found to be 59.1 and 73.5 kJ/mol respectively for the neat and 50 percent monomer concentration reaction mixture. The enhancement in Eα is attributed to the complexatton of the dioxouranium (VI) ion in the presence of solvent acetone, with consequent reduction in catalytic activity.  相似文献   

14.
The free‐radical graft copolymerization of maleic anhydride (MAH) onto polypropylene (PP) with the assistance of styrene (St) in supercritical carbon dioxide (CO2) was studied. The effects of the St concentration and initiator concentration on the functionality degree of the grafted PP in supercritical CO2 were investigated. The addition of St drastically increased the MAH functionality degree, which reached a maximum when the molar ratio of MAH and St was 1:1. St, an electron‐donating monomer, could interact with MAH through charge‐transfer complexes to form the St–MAH copolymer (SMA), which could then react with PP macroradicals to produce branches by termination between radicals. There was SMA in the grafting reaction system characterized by Fourier transform infrared and differential scanning calorimetry. Furthermore, the highest MAH functionality degree was obtained when the concentration of 2,2′‐azobisisobutyronitrile (AIBN) was 0.6 wt % based on PP. The effects of the temperature and pressure of supercritical CO2 on the functionality degree of the grafted PP were analyzed. An increase in the temperature accelerated the decomposition rate constant of AIBN, thereby promoting the grafting reaction. In addition, an increase in the temperature increased the diffusion of monomers and radicals in the disperse reaction system of supercritical CO2. The highest degree of functionality was found at 80°C. Also, the functionality degree of grafted PP decreased with an increase in the pressure of supercritical CO2 within the experimental range. The morphologies of pure PP and grafted PP were significantly different under polarizing optical microscopy. The PP spherulites were about 38 μm in size, and the grafted PP spherulites were significantly reduced because of heterogeneous nucleation. © 2003 Wiley Periodicals, Inc. J Appl Polym Sci 90: 853–860, 2003  相似文献   

15.
The catalytic effect of trans‐dichloro‐bis(ethylenediamine)cobalt(III) chloride (trans‐[Co(en)2Cl2]Cl) complex on the microemulsion polymerization of acrylonitrile, in the absence of added emulsifier, was investigated. Polymerization was studied at varying concentrations of initiator, monomer, complex, and solvent over the temperature range of 30–70°C. The overall activation energy (Ea, 39.26 kJ/mol), energy of dissociation of initiator (Ed, 61.62 kJ/mol), number of micelles (0.122 × 1018), and viscosity average molecular weight of the polymer were computed. The distribution of particle sizes was determined by transmission electron microscopy (TEM). It was found that the oil‐in‐water microemulsion polymerization was stabilized by the presence of the Co(III) complex, reducing the particle size into the nano range. The average diameters of PAN nanoparticles, obtained by TEM, were in the range of 50–150 nm at maximum conversion. The experimental particle size was mainly dependent on the concentration of complex and temperature. © 2004 Wiley Periodicals, Inc. J Appl Polym Sci 91: 3120–3126, 2004  相似文献   

16.
A bulk surface photografting process which is conducted in the interface between two polymer films was designed and investigated. The bulk surface photografting is a highly efficient process. With this method, the surface of hydrophobic polymers can be made hydrophilic in less than 2 s and a grafted layer 5 μm thick can be obtained in 30 s. The kinetic investigation shows that the bulk surface photografting polymerization involves a four-step reaction process: induction period, surface initiation, successive polymerization, involves a four-step reaction process: induction period, surface initiation, successive polymerization, and solid-phase crosslinking. The photoreduction of benzophenone (BP) takes place in the interlayer between the LDPE films and is a three-stage process: surface photoreduction, secondary photoreduction, and solid-state photoreduction. With regard to the photoreduction of the initiator caused by hydrogen abstraction, the kinetic studies show that the photoreduction rate has a first-order dependence on the BP concentration. The activation energy of the hydrogen abstraction reaction is about 28.5 KJ (6.8 kcal)/mol. With regard to the photografting polymerization reaction, the reaction order of the rate Rp with respect to the monomer is unity and 0.89 with respect to BP. This means that the termination reaction takes place mainly by combination of polymer chain free radicals and semipinacol free radicals from BP. The activation energy of the overall polymerization reaction is around 8.8 kJ (2.1 kcal)/mol. © 1996 John Wiley & Sons, Inc.  相似文献   

17.
聚丙烯固相接枝丙烯酸聚合动力学及其接枝聚合速率模型   总被引:12,自引:4,他引:8  
基于自由基固相接枝聚合的终止反应主要是自由基单基终止反应的假设提出了相应的聚合机理,并建立了聚合速率模型,聚合速率与引发剂浓度呈1次方、与单体浓度呈小于1次方关系,与聚合温度服从Arrhenius关系.实验考察了聚丙烯固相接枝丙烯酸体系聚合温度、引发剂浓度、单体浓度与初始接枝聚合速率的依赖关系,这一关系与上述速率模型十分吻合.采用无约束非线性优化方法得到了各参数的全局最优解:频率因子为6.868×109,表观活化能为58.89 kJ•mol-1,单体浓度的幂为0.78.  相似文献   

18.
Ring‐opening polymerization of D,L ‐lactide (LA) has been successfully carried out by using rare earth 2,6‐dimethylaryloxide (Ln(ODMP)3) as single component catalyst or initiator for the first time. The effects of different rare earth elements, solvents, monomers and catalyst concentration as well as polymerization temperature and time on the polymerization were investigated. The results show that La(ODMP)3 exhibits higher activity to prepare poly(D,L ‐lactide) (PLA) with a viscosity molecular weight of 4.5 × 104 g mol?1 and the conversion of 97 % at 100 °C in 45 min. The catalytic activity of Ln(ODMP)3 has following sequence: La > Nd > Sm > Gd > Er > Y. A kinetic study has indicated that the polymerization is first order with respect to both monomer and catalyst concentration. The apparent activation energy of the polymerization of LA with La(ODMP)3 is 69.6 kJ mol?1. The analyses of polymer ends indicate that the LA polymerization proceeds according to ‘coordination–insertion’ mechanism with selective cleavage of the acyl–oxygen bond of the monomer. Copyright © 2004 Society of Chemical Industry  相似文献   

19.
Solid‐phase grafting of a soft vinyl monomer, butyl methylacrylate (BMA), onto polypropylene (PP) matrixes with 2,2′‐azobisisobutyronitrile (AIBN) as initiator was carried out to enhance the polarity of polymer. Soft vinyl monomer was a novel notion in grafting modification of PP. Effects of swell time, BMA concentration, AIBN concentration, grafting reaction time, and temperature on grafting percentage (Gp) and grafting efficiency (Ge) were examined. The optimal conditions of grafting reaction were obtained: swell time of 60 min, BMA concentration of 6 wt %, AIBN concentration of 0.05 wt %, reaction temperature of 85°C, and reaction time of 2 h. The grafting samples were investigated by such characterization techniques as Fourier transform infrared spectroscopy (FTIR), thermal gravimetric analysis (TGA), and scanning electron microscope (SEM) analysis. FTIR results indicated that BMA was actually grafted onto PP backbone. TGA results showed that the decomposition temperature increases with addition of BMA into PP backbone. SEM results indicated that the surfaces of PP‐g‐BMA had a markedly bumpy texture, whereas the pure PP surface was very smooth. Water contact angle results showed that the polarity and hydrophilicity of PP were improved effectively. Compared with the traditional monomer MAH, Gp, and Ge, melt flow rate and mechanical property results all indicated that the soft vinyl monomer had a many advantages in the modification of PP. In the end, the mechanism of solid grafting was discussed. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

20.
Poly(N-[(1-n-butoxycarbonyl)ethyl]maleimide) (PBAM) was synthesized by solution polymerization with 2,2′-Azobis(isobutylronitrile) (AIBN) as radical initiator. The resulting polymer(PBAM) was characterized by infrared spectroscopy (IR), themogravimetry (TG), and differential thermal analysis (DTA). The initial decomposition temperature of PBAM is 321.6°C; the glass transition temperature of PBAM was 240.5°C. The effects of solvent, temperature, initiator concentration ([I]), and monomer concentration ([BAM]) on polymerization were also discussed. The overall activation energy (Ea) of homopolymerization was determined (Ea = 93.5 kJ/mol). It was revealed that the rate of polymerization (Rp) can be expressed as Rp ∝ [I]0.58[BAM]. © 2001 John Wiley & Sons, Inc. J Appl Polym Sci 82: 424–427, 2001  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号