首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Transition metal (Co, Fe, Mn)‐doped In2O3?y mesoporous oxides are synthesized by nanocasting using mesoporous silica as hard templates. 3D ordered mesoporous replicas are obtained after silica removal in the case of the In‐Co and In‐Fe oxide powders. During the conversion of metal nitrates into the target mixed oxides, Co, Fe, and Mn ions enter the lattice of the In2O3 bixbyite phase via isovalent or heterovalent cation substitution, leading to a reduction in the cell parameter. In turn, non‐negligible amounts of oxygen vacancies are also present, as evidenced from Rietveld refinements of the X‐ray diffraction patterns. In addition to (In1?xTMx)2O3?y, minor amounts of Co3O4, α‐Fe2O3, and MnxOy phases are also detected, which originate from the remaining TM cations not forming part of the bixbyite lattice. The resulting TM‐doped In2O3?y mesoporous materials show a ferromagnetic response at room temperature, superimposed on a paramagnetic background. Conversely, undoped In2O3?y exhibits a mixed diamagnetic‐ferromagnetic behavior with much smaller magnetization. The influence of the oxygen vacancies and the doping elements on the magnetic properties of these materials is discussed. Due to their 3D mesostructural geometrical arrangement and their room‐temperature ferromagnetic behavior, mesoporous oxide‐diluted magnetic semiconductors may become smart materials for the implementation of advanced components in spintronic nanodevices.  相似文献   

2.
Composition‐tunable ZnxCd1–xS alloyed nanocrystals have been synthesized by a new approach consisting of thermolyzing a mixture of cadmium ethylxanthate (Cd(exan)2) and zinc ethylxanthate (Zn(exan)2) precursors in hot, coordinating solvents at relatively low temperatures (180–210 °C). The composition of the alloyed nanocrystals was accurately adjusted by controlling the molar ratio of Cd(exan)2 to Zn(exan)2 in the mixed reactants. The alloyed ZnxCd1–xS nanocrystals prepared in HDA/TOP (HDA: hexadecylamine; TOP: trioctylphosphine) solution exhibit composition‐dependent shape and phase structures as well as composition‐dependent optical properties. The shape of the ZnxCd1–xS nanocrystals changed from dot to single‐armed rod then to multi‐armed rod with a decrease of Zn content in the ternary nanoparticles. The alloying nature of the ZnxCd1–xS nanocrystals was consistently confirmed by the results of high‐resolution transmission electron microscopy (HRTEM), X‐ray diffraction (XRD), and UV‐vis absorption and photoluminescence (PL) spectroscopy. Further, the shape‐controlled synthesis of the ternary alloyed nanocrystals was realized by selecting appropriate solvents. Uniform nanodots in the whole composition range were obtained from TOPO/TOP solution, (TOPO: trioctylphosphine oxide) and uniform nanorods in the whole composition range were prepared from HDA/OA solution (OA: octylamine). The effect of the reaction conditions, such as solvent, reaction temperature, and reaction time, on the PL spectra of the alloyed ZnxCd1–xS nanocrystals was also systematically studied, and the reaction conditions were optimized for improving the PL properties of the nanocrystals.  相似文献   

3.
RuO2@SiO2 nanomaterials are prepared using hybrid mesostructured silica (EtO)2P(O)(CH2)3SiO1.5/x SiO2 (x = 9, 16) by anchoring the metal precursor [Ru(COD)(COT)] (COD is 1,3‐cyclooctadiene, COT is 1,3,5‐cyclooctatriene) inside the pores of the organized silica matrix through the phosphonate moieties. Following this task, the nanoparticles are fabricated by i) decomposing the metal precursor with hydrogen at room temperature in tetrahydrofuran to achieve ruthenium nanoparticles and ii) thermally treating the ruthenium particles in silica at 450 °C in air to fabricate RuO2. The materials containing Ru and RuO2 nanoparticles are characterized by elemental analysis, transmission electron microscopy (TEM), X‐ray diffraction (XRD), nitrogen sorption measurements, and 31P and 13C NMR. The obtained RuO2@SiO2 nanomaterials are evaluated as catalytic filters when deposited onto gas sensors for the preferential detection of propane in the multicomponent gas mixture propane/carbon monoxide/nitrogen dioxide.  相似文献   

4.
Elliptically shaped (Pb1–xCdx)S nanoparticles (NPs) of average size 2.3 × 2.9 nm (minor axis × major axis) have been prepared via reaction of a solid [oligo(p‐phenylene‐ethynylene) dicarboxylate]Pb0.9Cd0.1 salt matrix, with gaseous H2S. A significantly long emission lifetime, with multi‐exponential behavior, is detected in time‐resolved photoluminescence measurements, substantially different from the decay patterns of pure PbS and CdS NPs within the same organic matrix. Evidence for the co‐existence of Cd and Pb within the same particle is provided by light‐induced X‐ray photoelectron spectroscopy.  相似文献   

5.
Composite films with low dielectric constants (k) containing micro‐ and mesopores are synthesized from precursor solutions for the preparation of mesoporous silica and ethanolic suspensions of silicalite‐1 nanoparticles. The material contains silicalite‐1 nanoparticles (include nanocrystals and nanoslabs/intermediates) embedded in a randomly oriented matrix of highly porous mesoporous silica. Micropores result from the incorporated silicalite‐1 nanoparticles, while decomposition of the porogen F127 leads to additional mesopores. The porosity of the composite films increases from 9 to 60% with the increase in porogen loading, while in parallel the elastic modulus and hardness decrease. The elastic moduli of the films are in the range of 13–20 GPa. Hydrophobic surfaces of the composite films are obtained by introducing methyl triethoxysilane during the preparation of both precursor solutions, leading to the incorporation of ? CH3 groups in the final composite films. These methyl groups are stable up to at least 500 °C. A low k value of approximately 2 is observed for films cured at 400 °C in N2 flow, which is ideal for removing templates without decomposing methyl groups. Due to the intrinsic hydrophobicity of the material, post‐silylation is not required rendering the composite films attractive candidates for future low k materials.  相似文献   

6.
A general method to synthesize mesoporous metal oxide@N‐doped macroporous graphene composite by heat‐treatment of electrostatically co‐assembled amine‐functionalized mesoporous silica/metal oxide composite and graphene oxide, and subsequent silica removal to produce mesoporous metal oxide and N‐doped macroporous graphene simultaneously is reported. Four mesoporous metal oxides (WO3? x , Co3O4, Mn2O3, and Fe3O4) are encapsulated in N‐doped macroporous graphene. Used as an anode material for sodium‐ion hybrid supercapacitors (Na‐HSCs), mesoporous reduced tungsten oxide@N‐doped macroporous graphene (m‐WO3? x @NM‐rGO) gives outstanding rate capability and stable cycle life. Ex situ analyses suggest that the electrochemical reaction mechanism of m‐WO3? x @NM‐rGO is based on Na+ intercalation/de‐intercalation. To the best of knowledge, this is the first report on Na+ intercalation/de‐intercalation properties of WO3? x and its application to Na‐HSCs.  相似文献   

7.
Polycrystalline films of Cd1-x Zn x Te (x = 0–0.4) and Cd1-x Mn x Te (x = 0–0.25) were grown by MBE and MOCVD, respectively, on CdS/SnO2/glass substrates to investigate their feasibility for solar cell applications. The compositional uniformity and interface quality of the films were analyzed by x-ray diffraction, surface photovoltage, and Auger depth profile measurements to establish a correlation between growth conditions and lattice constant, atomic concentration, and bandgap of the ternary films. MBE-grown polycrystalline Cd1-x Zn x Te films showed a linear dependence between Zn/(Cd + Zn) beam flux ratio, Zn concentration in the film, and the bandgap. Polycrystalline Cd1-x Zn x Te films grown at 300° C showed good compositional uniformity in contrast to compositionally non-uniform Cd1-x Mn x Te films grown by MOCVD in the temperature range of 420–450° C. The MBE-grown Cd1-x Zn x Te interface also showed significantly less interdiffusion compared to the MOCVD-grown Cd1-x Mn x Te/CdS interface, where preferential exchange between Cd from the CdS layer and Mn from the Cd1-x Mn x Te film was observed. The compositional uniformity of MOCVD-grown polycrystalline Cd1-x Mn x Te films grown on CdS/SnO2/glass substrates was found to be a strong function of the growth conditions as well as the Mn source.  相似文献   

8.
A sonochemical method has been successfully used in order to incorporate MnO2 nanoparticles inside the pore channels of CMK‐3 ordered mesoporous carbon. Modification of the intrachannel surfaces of CMK‐3 to make them hydrophilic enables KMnO4 to readily penetrate the pore channels. At the same time, the modification changes the surface reactivity, enabling the formation of MnO2 nanoparticles inside the pores of CMK‐3 by the sonochemical reduction of metal ions. The resultant structures were characterized by X‐ray diffraction (XRD), nitrogen adsorption, and transmission electron microscopy (TEM). CMK‐3 with 20 wt.‐% loading of MnO2 inside CMK‐3 delivered an improved discharge performance of 223 mA h g–1 at a relatively high rate of 1 A g–1. Almost no decrease in specific capacity is observed for the second cycle, and a discharge capacity of more than 165 mA h g–1 is retained after 100 cycles. This is attributed to the nanometer‐sized MnO2 formed inside CMK‐3 and the high surface area of the mesopores (3.1 nm) in which the MnO2 nanoparticles are formed.  相似文献   

9.
Transition metal‐based nanoparticles have shown their broad applications in versatile biomedical applications. Although traditional iron‐based nanoparticles have been extensively explored in biomedicine, transition metal manganese (Mn)‐based nanoparticulate systems have emerged as a multifunctional nanoplatform with their intrinsic physiochemical property and biological effect for satisfying the strict biomedical requirements. This comprehensive review focuses on recent progress of Mn‐based functional nanoplatforms in biomedicine with the particular discussion on their elaborate construction, physiochemical property, and theranostic applicability. Several Mn‐based nanosystems are discussed in detail, including solid/hollow MnOx nanoparticles, 2D MnOx nanosheets, MnOx‐silica/mesoporous silica nanoparticles, MnOx‐Fe3O4 nanoparticles, MnOx‐Au, MnOx‐fluorescent nanoparticles, Mn‐based organic composite nanosystem, and some specific/unique Mn‐based nanocomposites. Their versatile biomedical applications include pH/reducing‐responsive T1‐weighted positive magnetic resonance imaging, controlled drug loading/delivery/release, protection of neurological disorder, photothermal hyperthermia, photodynamic therapy, chemodynamic therapy, alleviation of tumor hypoxia, immunotherapy, and some specific synergistic therapies, which are based on their disintegration behavior under the mildly acidic/reducing condition, multiple enzyme‐mimicking activity, catalytic‐triggering Fenton reaction, etc. The biological effects and biocompatibility of these Mn‐based nanosystems are also discussed, accompanied with a discussion on challenges/critical issues and an outlook on the future developments and clinical‐translation potentials of these intriguing Mn‐based functional nanoplatforms.  相似文献   

10.
We report the self‐assembly and characterization of mesoporous silica thin films with a 3D ordered arrangement of isolated spherical pores. The preparation method was based on solvent‐evaporation induced self‐assembly (EISA), with MTES (CH3–Si(OCH2CH3)3) as the silica precursor and a polystyrene‐block‐poly(ethylene oxide) (PS‐b‐PEO) diblock copolymer as the structure‐directing agent. The synthetic approach was designed to suppress the siloxane condensation rate of the siloxane network, allowing co‐self‐assembly of the silica and the amphiphile, followed by retraction of the PEO chains from the silica matrix and matrix consolidation, to occur unimpeded. The calcined films retained the methyl ligands and exhibited no measurable microporosity, thereby indicating that the 3D‐ordered spherical mesopores are not interconnected. A solvent‐mediated formation mechanism is proposed for the absence of microporosity. Due to their closed porosity and hydrophobicity, the MTES‐based films and MTES‐TEOS (Si(OCH2CH3)4)‐based hybrid films we describe should be promising for applications such as low‐k dielectrics.  相似文献   

11.
Solution‐processing hybrid metal halide perovskites are promising materials for developing flexible thin‐film devices. This work reports the substrate effects on the spin–orbit coupling (SOC) in perovskite films through thermal expansion under thermal annealing. X‐ray diffraction (XRD) measurements show that using a flexible polyethylene naphthalate (PEN) substrate introduces a smaller mechanical strain in perovskite MAPbI3?xClx films, as compared to conventional glass substrates. Interestingly, the linear/circular photoexcitation‐modulated photocurrent studies find that decreasing mechanical strain gives rise to a weaker orbit–orbit interaction toward decreasing the SOC in the MAPbI3?xClx films prepared on flexible PEN substrates relative to rigid glass substrates. Simultaneously, decreasing the mechanical strain causes a reduction in the internal magnetic parameter inside the MAPbI3?xClx films, providing further evidence to show that introducing mechanical strain can affect the SOC in hybrid perovskite films upon using flexible substrates toward developing flexible perovskite thin‐film devices. Furthermore, thermal admittance spectroscopy indicates that the trap states are increased in the perovskite films prepared on flexible PEN substrates as compared to glass substrates. Consequently, PEN and rigid glass substrates lead to shorter and longer photoluminescence lifetimes, respectively. Clearly, these findings provide an insightful understanding on substrate effects on optoelectronic properties in flexible perovskite thin‐film devices.  相似文献   

12.
In this paper, we report a novel synthesis and selective bioseparation of the composite of Fe3O4 magnetic nanocrystals and highly ordered MCM‐41 type periodic mesoporous silica nanospheres. Monodisperse superparamagnetic Fe3O4 nanocrystals were synthesized by thermal decomposition of iron stearate in diol in an autoclave at low temperature. The synthesized nanocrystals were encapsulated in mesoporous silica nanospheres through the packing and self‐assembly of composite nanocrystal–surfactant micelles and surfactant/silica complex. Different from previous studies, the produced magnetic silica nanospheres (MSNs) possess not only uniform nanosize (90 ~ 140 nm) but also a highly ordered mesostructure. More importantly, the pore size and the saturation magnetization values can be controlled by using different alkyltrimethylammonium bromide surfactants and changing the amount of Fe3O4 magnetic nanocrystals encapsulated, respectively. Binary adsorption and desorption of proteins cytochrome c (cyt c) and bovine serum albumin (BSA) demonstrate that MSNs are an effective and highly selective adsorbent for proteins with different molecular sizes. Small particle size, high surface area, narrow pore size distribution, and straight pores of MSNs are responsible for the high selective adsorption capacity and fast adsorption rates. High magnetization values and superparamagnetic property of MSNs provide a convenient means to remove nanoparticles from solution and make the re‐dispersion in solution quick following the withdrawal of an external magnetic field.  相似文献   

13.
In recent years, various methods have been developed for the synthesis of single phase ferrite nanomaterials. Most approaches involve the use of high temperatures, or the preparation of powders. Ceramic/metal nanocomposites and composite thin films have attracted much attention because of their unique mechanical, electrical, and magnetic properties. Here, we introduce a new kind of magnetic material, which we have called ferrite/metal composite thin films. Spinel thin films MFe2O4/Fe (M = Zn, Mg) with controlled grain sizes and shapes were directly fabricated on an Fe substrate by a soft solution processing route at temperatures below 200 °C. The cooperative magnetic performance of the ferrite/Fe composite thin films was found to be much improved compared to that of single‐phase ferrite products, and the ferrite/Fe thin films displayed superparamagnetism.  相似文献   

14.
ZrO2 and HfO2 nanoparticles are homogeneously dispersed in SiO2 matrices (supported film and bulk powders) by copolymerization of two oxozirconium and oxohafnium clusters (M4O2(OMc)12, M = Zr, Hf; OMc = OC(O)–C(CH3)?CH2) with (methacryloxypropyl)trimethoxysilane (MAPTMS, (CH2?C(CH3)C(O)O)–(CH2)3Si(OCH3)3). After calcination (at a temperature ≥800 °C), a silica matrix with homogeneously distributed MO2 nanocrystallites is obtained. This route yields a spatially homogeneous dispersion of the metal precursors inside the silica matrix, which is maintained during calcination. The composition of the films and the powders is studied before and after calcination by using Fourier transform infrared (FTIR) analysis, X‐ray photoelectron spectroscopy (XPS), secondary ion mass spectrometry (SIMS), and laser ablation inductively coupled plasma mass spectrometry (LA‐ICPMS). The local environment of the metal atoms in one of the calcined samples is investigated by using X‐ray Absorption Fine Structure (XAFS) spectroscopy. Through X‐ray diffraction (XRD) the crystallization of Hf and Zr oxides is seen at temperatures higher than those expected for the pure oxides, and transmission electron microscopy (TEM) shows the presence of well‐distributed and isolated crystalline oxide nanoparticles (5–10 nm).  相似文献   

15.
Organometal trihalide perovskite based solar cells have exhibited the highest efficiencies to‐date when incorporated into mesostructured composites. However, thin solid films of a perovskite absorber should be capable of operating at the highest efficiency in a simple planar heterojunction configuration. Here, it is shown that film morphology is a critical issue in planar heterojunction CH3NH3PbI3‐xClx solar cells. The morphology is carefully controlled by varying processing conditions, and it is demonstrated that the highest photocurrents are attainable only with the highest perovskite surface coverages. With optimized solution based film formation, power conversion efficiencies of up to 11.4% are achieved, the first report of efficiencies above 10% in fully thin‐film solution processed perovskite solar cells with no mesoporous layer.  相似文献   

16.
Cd1−xZnxS thin films were grown on soda–lime glass substrates by chemical-bath deposition (CBD) at 80 °C with stirring. All the samples were annealed at 200 °C for 60 min in the air. The crystal structure, surface morphology, thickness and optical properties of the films were studied with transmission electron microscopy (TEM), X-ray diffraction (XRD), scanning electron microscopy (SEM), step height measurement instrument and spectrophotometer respectively. The results revealed that Cd1−xZnxS thin films had cubic crystal structure and the intensity of the diffraction peak increased gradually as ammonia concentration rose and the grain size varied from 5.1 to 8.3 nm. All of Cd1−xZnxS thin films had a granular surface with some smaller pores and the average granule sizes increased from 92 to 163 nm with an increase in ammonia concentration. The Cd1−xZnxS thin films had the highest transmittance with ammonia concentration of 0.5 M L−1, whose thickness was 50 nm and band gap was 2.62 eV.  相似文献   

17.
Preparation of coaxial (core–shell) CdS–ZnS and Cd1–xZnxS–ZnS nanowires has been achieved via a one‐step metal–organic chemical vapor deposition (MOCVD) process with co‐fed single‐source precursors of CdS and ZnS. Single‐source precursors of CdS and ZnS of sufficient reactivity difference were prepared and paired up to form coaxial nanostructures in a one‐step process. The sequential growth of ZnS on CdS nanowires was also conducted to demonstrate the necessity and advantages of the precursor co‐feeding practice for the formation of well‐defined coaxial nanostructures. The coaxial nanostructure was characterized and confirmed by high‐resolution transmission electron microscopy and corresponding energy dispersive X‐ray spectrometry analyses. The photoluminescence efficiencies of the resulting coaxial CdS–ZnS and Cd1–xZnxS–ZnS nanowires were significantly enhanced compared to those of the plain CdS and plain Cd1–xZnxS nanowires, respectively, owing to the effective passivation of the surface electronic states of the core materials by the ZnS shell.  相似文献   

18.
Aqueous gel‐like lyotropic liquid crystals with extensive hydrogen bonding and nanoscale hydrophilic compartments have been used to define the growth of macroscopic nanotemplated CdS and CdTe thin films. These mesoporous semiconductor films contain a hexagonal array of 2.5 nm pores, 7 nm center‐to‐center, that extend in an aligned fashion perpendicular to the substrate. The CdS is deposited on a polypropylene substrate by a reaction between Cd(NO3)2 dissolved in the liquid crystal and H2S transported via diffusion through the substrate. The CdTe is electrodeposited on indium‐tin‐oxide‐coated glass from TeO2 and Cd(NO3)2, both of which are dissolved in the liquid‐crystal template. The porous nature of the CdTe films enables chemical transformations of the entire bulk of the film. As electrodeposited, the CdTe films are Te rich and, in contrast to a non‐templated film, the excess Te could be removed via a chemical treatment, proving the continuity of the pores in the nanotemplated films. These results suggest that liquid‐crystal lithography with hydrogen‐bonding amphiphiles may be a useful approach to create materials with nanoscale features over macroscopic dimensions.  相似文献   

19.
The assembly of multifunctional nanocomposite materials is demonstrated by exploiting the molecular sieving property of SBA‐16 nanoporous silica and using it as a template material. The cages of the pore networks are used to host iron oxide magnetic nanoparticles, leaving a pore volume of 0.29 cm3 g?1 accessible for drug storage. This iron oxide–silica nanocomposite is then functionalized with amine groups. Finally the outside of the particle is decorated with antibodies. Since the size of many protein molecules, including that of antibodies, is too large to enter the pore system of SBA‐16, the amine groups inside the pores are preserved for drug binding. This is proven using a fluorescent protein, fluorescein‐isothiocyanate‐labeled bovine serum albumin (FITC‐BSA), with the unreacted amine groups inside the pores dyed with rhodamine B isothiocyanate (RITC). The resulting nanocomposite material offers a dual‐targeting drug delivery mechanism, i.e., magnetic and antibody‐targeting, while the functionalization approach is extendable to other applications, e.g., fluorescence–magnetic dual‐imaging diagnosis.  相似文献   

20.
The tumor microenvironment (TME), which includes acidic and hypoxic conditions, severely impedes the therapeutic efficacy of antitumor agents. Herein, MnO2‐loaded, bovine serum albumin, and PEG co‐modified mesoporous CaSiO3 nanoparticles (CaM‐PB NPs) are developed as a nanoplatform with sequential theranostic functions for the engineering of TME. The MnO2 NPs generate O2 in situ by reacting with endogenous H2O2, relieving the hypoxic state of the TME that further modulates the cancer cell cycle status to S phase, which improves the potency of co‐loaded S phase‐sensitive chemotherapeutic drugs. After the hypoxia relief, CaM‐PB can sustainably release drugs due to the enlarged pores of mesoporous CaSiO3 in the acidic TME, preventing the drug pre‐leakage into the blood circulation and insufficient drug accumulation at tumor sites. Moreover, the Mn2+ released from the MnO2 NPs at tumor sites can potentially serve as a diagnostic agent, enabling the identification of tumor regions by T1‐weighted magnetic resonance imaging during therapy. In vivo pharmacodynamics results demonstrate that these synergetic effects caused by CaM‐PB NPs significantly contribute to the inhibition of tumor progression. Therefore, the CaM‐PB NPs with sequential theranostic functions are a promising system for effective cancer therapy.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号