首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
The effect of MnCO3 doped from 0 to 55 mol% into BaO–(Nd0.7Sm0.3)2O3–4TiO2 (BNST) sintered in a reducing atmosphere on the microstructure and electrical properties was studied. Mn3+ completely substituted into Ti4+-sites of BNST to form a solid solution, so there is no second phase until 42 mol% which is the maximum solubility. Mn (<42 mol%)-doped BNST sintered in a reducing atmosphere is in a semi-conducing state because the concentration of free electron is higher than that of the acceptors. On the other hand, when Mn content doped into BNST exceeds a critical value (>43 mol%), the second Mn-rich phase due to excess of Mn3+ substituted into Ti4+-site, corresponding to original BaO–(Nd0.7Sm0.3)2O3–4TiO2 (1 1 4) phase, is formed. Mn (>43 mol%)-doped BNST sintered in a reducing atmosphere is in an insulating state because the concentration of the acceptors is higher than that of liberated free electron, so the insulation resistance becomes high and tan δ becomes low. The formation of the second Mn-rich phase affects Q × f factor and temperature coefficient of capacitance (T.C.C.) of BNST significantly.  相似文献   

2.
《Ceramics International》2016,42(9):10758-10763
Large size Ba4.2Nd9.2Ti18O54 (BNT) ceramics doped with MnCO3, CuO and CoO were prepared by the conventional solid-state method. Only a single BaNd2Ti4O12 phase was formed in all samples. No second phase was found in the XRD patterns. The bulk density increases slightly because of the dopants. The SEM results showed that the grain size of Mn2+and Cu2+-doped BNT ceramics became larger with the increasing amount of dopants. The permittivity of all samples stays the same. However, the Q×f value of BNT ceramics increases by doping, especially with Mn2+ ions. The conductivity of BNT ceramic doped with Mn2+(0.5 mol‰) under high temperature is lower than that without doping. There are fewer defects in Mn2+-doped BNT ceramics. The XPS results indicated that Ti reduction was suppressed in BNT ceramics doped with 0.5 mol‰ Mn2+. BNT ceramics doped with 0.5 mol‰ Mn2+ ions sintered at 1320 °C for 2 h exhibited good microwave dielectric properties, with εr=88.67, Q×f=7408 GHz and τf = 82.98 ppm/°C.  相似文献   

3.
(Li, Ce, and Nd)-multidoped CaBi2Nb2O9 (CBN) Aurivillius phase ceramics were prepared via a conventional solid-state sintering route. The crystal structure including bond lengths and bond angles, microstructure, dielectric constant, DC resistivity, and piezoelectric properties were systematically investigated. Rietveld-refinements of X-ray results indicated that small quantity of (Li, Ce, Nd) doping (< 2.5 mol%) increases orthorhombic distortion, because of the smaller ionic radii of doping ions. However, orthorhombic distortion obviously decreased with increasing (Li, Ce, Nd) doping concentration from 5 to 25 mol%. The replacement of asymmetric A-site Bi3+ with 6s2 lone pair electrons by symmetric Li+, Ce3+ and Nd3+ ions decreased the orthorhombic distortion. The morphologies and electrical properties of sintered ceramics were tailored by the introducing (Li, Ce, Nd) multi-dopants. The improvement of piezoelectric properties of modified-CBN ceramics were attributed to decreasing grain sizes and morphotropic phase boundary (MPB). Ca0.85(Li0.5Ce0.25Nd0.25)0.15Bi2Nb2O9 (CBNLCN-15) ceramics had optimum properties, and d33 and Tc values were found to be ~ 13.1 pC/N and ~ 900 °C, respectively.  相似文献   

4.
ZnO-based varistor ceramics doped with Nd2O3 and Y2O3 have been prepared by the conventional ceramics method. The phase composition, microstructure and electrical properties of the ceramics have been investigated by XRD, SEM and a VI source/measure unit. The XRD and EDS analyses show the presence of ZnO, Bi2O3, Zn7Sb2O12, Y2O3, Nd-rich phase and Y-containing Bi-rich phase. The electrical properties analyzed show that the nonlinear coefficient of the varistor ceramics is in the range of 4.4–70.2, the threshold voltage is in the range of 247.1–1288.8 V/mm, and the leakage current is in the range of 1.51–214.6 μA/cm2. The 0.25 mol% Nd2O3 added varistor ceramics with 0.10 mol%Y2O3 sintered at 1050 °C exhibits excellent electrical properties with the high threshold voltage of 556.4 V/mm, the nonlinear coefficient of 61 and the leakage current of 1.55 μA/cm2. The results illustrate that doping Nd2O3 and Y2O3 in ZnO-based varistor ceramics may be a very promising route for the production of the higher threshold voltage and the nonlinear coefficient of ZnO-based varistor ceramics.  相似文献   

5.
《Ceramics International》2016,42(16):18333-18337
The effect of CuO/MnO additives on phase composition, microstructures, sintering behavior, and microwave dielectric properties of 3ZrO2-3TiO2-ZnNb2O6 (3Z-3T-ZN) ceramics prepared by conventional solid-state route were systematically investigated. CuO/MnO doped ceramics exhibited a main phase of α-PbO2-structured ZrTi2O6 and a secondary phase of rutile TiO2. SEM results showed that the grain size of MnO doped ceramics became larger with increasing amount of dopants. The presence of CuO/MnO additives effectively reduced the sintering temperature of 3Z-3T-ZN ceramics to 1220 °C. MnO doped into ceramics could enhance the Q×f values significantly. The 0.5 wt% CuO doped 3Z-3T-ZN ceramics with 0.5 wt% of MnO, sintered at 1220 °C for 4 h, was measured to show superior microwave dielectric properties, with an εr of 41.02, a Q×f value of 44,230 GHz (at 5.2 GHz), and τf value of +2.32 ppm/°C.  相似文献   

6.
The influence of 0.01–2 mol% Fe2O3 powder addition on the microstructure, mechanical and optical properties, and hydrothermal stability of highly-translucent 3Y-TZP ceramics is assessed and compared with commercially available co-precipitated 0.18 mol% Fe2O3 doped ZrO2 powder-based ceramics. Only those ceramics with up to 0.1 mol% Fe2O3 resulted in a proper shade for dental zirconia ceramics, with a typical composition of 87 vol% t-ZrO2 and 13 vol% c-ZrO2. The amount of cubic phase increased at higher Fe2O3 content. The hardness (∼13 GPa) and fracture toughness (∼3.6 MPa m1/2) of the 0.01 mol% - 0.1 mol% Fe2O3 doped 3Y-TZP was comparable, whereas the hardness decreased above 0.5 mol% Fe2O3 and the fracture toughness decreased above 2 mol% Fe2O3. The hydrothermal ageing resistance slightly increased for Fe2O3 concentrations up to 1 mol%, whereas the translucency slightly decreased with increasing Fe2O3 content.  相似文献   

7.
《Ceramics International》2016,42(9):10833-10837
Nb2O5 doped Ba(Zr0.2Ti0.8)O3 (short as BZT20) ceramics were prepared by a mixed-oxide method using a high-energy planetary ball mill and the influence of Nb2O5 addition on microstructure, dielectric properties and diffuse phase transition behavior of BZT20 ceramics were investigated. It was demonstrated that Nb5+entered the B-site of BZT20 ceramic and substituted for Ti4+, which caused the expansion and distortion of crystal lattice. BZT20 ceramics doped with 0.2 mol% Nb2O5 showed excellent dielectric property and lower diffusivity with εm=37,823 and γ=1.49. We supposed that the increase of dielectric constant and decrease of diffuseness parameter with increasing Nb2O5 content were caused by lattice disorder and unbalancing of cations induced by the substitution of Ti4+ by Nb5+ in the B sites of BZT20 ceramics. The Curie temperature decreased with the increase of Nb2O5 content, which can be attributed to enlarged distortion energy of the Nb doped BZT20 structure. Besides, grain size effect on the dielectric property and diffuse phase transition behavior of Nb2O5 doped BZT20 ceramics was also investigated.  相似文献   

8.
A variety of combinations of Y2O3 and MgO were used as additives in preparing Si3N4 ceramics by the sintering of reaction-bonded silicon nitride (SRBSN) method. By varying the amount of Y2O3 in the range of 0-5 mol% and that of MgO in the range of 0-8 mol%, the effects of Y2O3 and MgO additives on nitridation and sintering behaviors as well as thermal conductivity were studied. It was found that appropriate amount and combination of Y2O3 and MgO additives were essential for attaining full densification and achieving high thermal conductivity. The sample doped with 2.5 mol% of Y2O3 and 5 mol% of MgO attained a thermal conductivity of 128 Wm−1K−1 when sintered at 1900°C for 6 hours, and the sample doped with 2 mol% of Y2O3 and 4 mol% of MgO achieved a thermal conductivity of 156 Wm−1K−1 when sintered for 24 hours.  相似文献   

9.
《Ceramics International》2017,43(11):8018-8022
In this work, Sm2O3- and SiO2-codoped SnO2-Zn2SnO4 ceramic varistors were prepared through traditional ceramic processing, and the effect of Sm2O3 on the resulting microstructure and electrical properties was investigated. The results demonstrated that the ceramics were composed mainly of SnO2 and Zn2SnO4, and Sm was distributed homogeneously in the grains and along the grain boundaries. With 0.2 mol% Sm2O3 doping, the grain growth was obviously promoted. Further increases in Sm2O3 to 0.4 mol% resulted in trace amount of SiO2 and segregations containing elemental Sm via X-ray diffraction patterns and microstructure photos, respectively. In the sample doped with 0.3 mol% Sm2O3, optimal electrical characteristics of α=9.4, EB=10 V/mm, JL=46 μA/cm2 and ε′=1.2×104 were obtained. Simultaneously, the sample doped with 0.3 mol% Sm2O3 had the lowest conductance activation energy of 0.16 eV at temperatures lower than 110 °C. This good performance indicates that Sm2O3- and SiO2-codoped SnO2-Zn2SnO4 composite ceramics are viable candidate for the manufacture of capacitor-varistor functional devices.  相似文献   

10.
The electrical properties and degradation characteristics of low voltage ZnO varistors were investigated as a function of Nd2O3 content. The varistor ceramics with 0.03 mol% Nd2O3 sintered at 1250 °C were far more densified than those with 0.06, 0.09 and 0.12 mol% Nd2O3. The addition of Nd2O3 to the low voltage ZnO varistors greatly improved the current–voltage characteristics; the nonlinear coefficient of varistors increase from 12.2 to 34.6 with increasing Nd2O3 content. The samples with 0.03 mol% Nd2O3 showed excellent stability due to high density and relatively good VI characteristics, with the nonlinear coefficient of 22.5 and the leakage current of 9.6 μA. Their variation rate of varistor voltage and nonlinear coefficient and leakage current were −4.7%, −5.4%, 18.3%, respectively, under AC degradation stress (1.0 V1 mA/125 °C/24 h).  相似文献   

11.
Dense ceramics of Ln:Lu2O3 (Ln = Pr, Eu, Tb, Dy) were obtained using spark plasma sintering (SPS) from co-precipitated nanocrystalline powders. X-ray diffraction, scanning and transmission electron microscopies were used for the characterization of Ln:Lu2O3 powders obtained by various annealing regimes. Transparency of the sintered ceramics was achieved when powders with highly developed crystallinity were used for sintering. Sintered ceramics exhibited luminescence with a characteristic emission based on the element doped into the Lu2O3 host. The light yield of the sintered ceramics improved when the sintered ceramics was further annealed. The annealing of the sintered ceramics also improved the transmittance in the visible region; however, the transparency was lost when the annealing temperature was too high. To our best knowledge, the SPS fabrication of dense ceramics of Pr3+, Tb3+ and Dy3+-doped Lu2O3 is reported here for the first time.  相似文献   

12.
Ca0.9La0.067TiO3 (abbreviated as CLT) ceramics doped with different amount of Al2O3 were prepared via the solid state reaction method. The anti-reduction mechanism of Ti4+ in CLT ceramics was carefully investigated. X-ray diffraction (XRD) was used to analyze the phase composition and lattice structure. Meanwhile, the Rietveld method was taken to calculate the lattice parameters. X-ray photoelectron spectroscopy (XPS) was employed to study the valence variation of Ti ions in CLT ceramics without and with Al2O3. The results showed that Al3+ substituted for Ti4+ to form solid solution and the solid solubility limit of Al3+ is near 1.11 mol%. Furthermore, the reduction of Ti4+ in CLT ceramics was restrained by acceptor doping process and the Q × f values of CLT ceramics were improved significantly. The CLT ceramic doped with 1.11 mol% Al2O3 exhibited good microwave dielectric properties: εr = 141, Q × f = 6848 GHz, τf = 576 ppm/°C.  相似文献   

13.
《Ceramics International》2016,42(4):5286-5290
In the present work, we have attempted to reduce the effect of coring effect in the titanate ceramic system BaTi4O9 (BT4) by doping it with Mn4+. The microwave dielectric BaTi4O9 ceramics doped with 0, 0.5 and 1.0 mol% Mn4+ were synthesized by conventional ceramic processing route. The XRD studies confirmed a single phase crystalline structure for all the ceramic samples studied. The SEM micrographs of the ceramics reveal a microstructural change leading towards a more uniform grain size distribution as the Mn4+ content increases to 1.0 mol%. In the low frequency region (100 Hz to 1 MHz), the temperature stability of dielectric properties exhibits a marked improvement with the increasing amount of Mn4+ in the ceramic system. In the microwave frequency region (9.3 GHz), Q-factor increases from 11,625 GHz to 46,500 GHz for BaTi4O9 ceramic doped with 1.0 mol% Mn4+. The present paper reveals that the commonly observed degradation of dielectric properties due to coring effect in the BaTi4O9 ceramic system can be controlled by doping it with an appropriate quantity of Mn4+.  相似文献   

14.
The phase assembly of 1.0–5.0 mol% Nd2O3-doped ZrO2 sintered at 1400 °C revealed that the tetragonal ZrO2 phase could not be completely stabilised. Co-stabilising of 0.5–2.5 mol% Nd2O3 with 0.5–1.0 mol% Y2O3, however, allowed the preparation of fully dense (Nd,Y)-TZP ceramics by pressureless sintering in air at 1450 °C. The mixed stabiliser monoclinic zirconia nanopowder starting material was synthesized from a suspension of neodymium nitrate, yttrium nitrate and monoclinic zirconia powder in an alcohol/water mixture. A HV30 hardness of 10 GPa combined with an excellent indentation toughness of 13 MPa m1/2 could be achieved for the (1.0Nd,1.0Y)- and (1.5Nd,1.0Y)-TZP ceramics. The influence of the mixed stabiliser content on the phase stability and mechanical properties are investigated and discussed.  相似文献   

15.
《Ceramics International》2021,47(19):27545-27552
B2O3 and CuO were codoped into 6Nd[(Zn0.7Co0.3)0.5Ti0.5]O3–4(Na0.5Nd0.5)TiO3 (abbreviated as 6NZCT–4NNT) ceramics as sintering aids. The influences of the sintering aids on the sintering characteristics, microstructure and microwave dielectric properties of the 6NZCT–4NNT ceramics were systematically investigated as a function of the proportion of B2O3 and CuO. Codoping could greatly reduce the sintering temperature from 1410 °C to 1150 °C, indicating that B2O3/CuO are good sintering aids for 6NZCT–4NNT ceramics. The B2O3/CuO sintering aids had no significant impact on the phase purity of the investigated ceramics, even though a solid solution was formed due to Cu2+ ion substitution. However, they had evident influences on the surface morphology and grain size. The average grain size was enlarged with increasing amounts of CuO in the B2O3/CuO sintering aids. Remarkable deterioration of the microwave dielectric properties for 6NZCT-4NNT ceramics was not observed when codoping an appropriate amount of B2O3 and CuO. The 6NZCT–4NNT ceramics codoped with 2.0 mol% B2O3 and 2.0 mol% CuO sintered at 1150 °C for 3 h exhibited a homogeneous microstructure and promising microwave dielectric properties: an appropriate dielectric constant (εr = 49.37), a high quality factor (QF = 47,295 GHz), and a near-zero temperature coefficient of resonant frequency (TCF = +0.9 ppm/°C).  相似文献   

16.
Doping behaviors of NiO and Nb2O5 in BaTiO3 in two doping ways and dielectric properties of BaTiO3-based X7R ceramics were investigated. When doped in composite form, the additions rendered higher solubility than that doped separately due to the identical valence between the complex (Ni1/32+Nb2/35+)4+ and Ti4+. NiO–Nb2O5 composite oxide was more effective in broadening dielectric constant peaks which was responsible for the temperature-stability of BaTiO3 ceramics. A reduction in grain size was observed in the specimens with 0.5–0.8 mol% NiO–Nb2O5 composite oxide, whereas the abnormal growth of individual grains took place in the 1.0 mol% NiO–Nb2O5 composite oxide-doped specimen. When the specimen of BaTiO3 doped with 0.8 mol% NiO–Nb2O5 composite oxide was sintered at 1300 °C for 1.5 h in air, good dielectric properties were obtained and the requirement of (EIA) X7R specification with a dielectric constant of 4706 and dielectric loss lower than 1.5% were satisfied.  相似文献   

17.
Apatite-type neodymium silicates doped with various cations at the Si site, Nd10Si5BO27?δ (B=Mg, Al, Fe, Si), were synthesized via the high-temperature solid state reaction process. X-ray diffraction and complex impedance analysis were used to investigate the microstructure and electrical properties of Nd10Si5BO27?δ ceramics. All Nd10Si5BO27?δ ceramics consist of a hexagonal apatite structure with a space group P63/m and a small amount of second phase Nd2SiO5. Neodymium silicates doped with Mg2+ or Al3+ cations at the Si site have an enhanced total conductivity as contrasted with undoped Nd10Si6O27 ceramic at all temperature levels. However, doping with Fe3+ cations at the Si site has a little effect on improving the total conductivity above 873 K. The enhanced oxide-ion conductivity in a hexagonal apatite-type structure depends upon the diffusion of interstitial oxide-ion through oxygen vacancies induced by the Mg2+ or Al3+ substitution to the Si4+ site and through the channels between the SiO4 tetrahedron and Nd3+ cations. At 773 K, the highest total conductivity is 4.19×10?5 S cm?1 for Nd10Si5MgO26 ceramic. At 1073 K, Nd10Si5AlO26.5 silicate has a total conductivity of 1.55×10?3 S cm?1, which is two orders of magnitude higher than that of undoped Nd10Si6O27.  相似文献   

18.
The influence of Al2O3 doping in the range 0.00–0.83 mol% on the microstructure and current–voltage characteristics of ZnO-based varistor ceramics sintered at 1200 °C for 2 h was studied. The threshold voltage VT (V/mm) increased up to a dopant level of about 0.08 mol% Al2O3; the nonlinear coefficient α was significantly increased by additions of up to 0.04 mol% Al2O3, although larger additions of Al2O3 caused it to decrease; and the leakage current increased sharply with increasing amounts of Al2O3. Doping with Al2O3 up to about 0.12 mol% Al2O3 resulted in a significantly decreased ZnO grain size, which is mainly responsible for the significantly increased threshold voltage, VT. No ZnAl2O4 spinel phase was detected in any of the samples, and EDXS and WDXS analyses showed that most of the added Al2O3 distributed between the Zn7Sb2O12 spinel phase and the ZnO phase, while only trace amounts were detected in the Bi2O3-rich phase. The spinel phase incorporates an appropriate amount of Al2O3; however, with an increasing amount of added Al2O3, more of it remains outside the spinel phase in the Bi2O3-rich liquid, where it can incorporate into the growing ZnO grains at the sintering temperature. The amount of Al in the ZnO grains was determined. A mechanism for the grain growth inhibition resulting from the small amounts of Al2O3 in the Bi2O3-rich liquid phase is also proposed.  相似文献   

19.
The effects of sintering temperature and the addition of CuO on the microstructure and piezoelectric properties of 0.95(K0.5Na0.5)NbO3-0.05Li(Nb0.5Sb0.5)O3 were investigated. The KNN-5LNS ceramics doped with CuO were well sintered even at 940 °C. A small amount of Cu2+ was incorporated into the KNN-5LNS matrix ceramics and XRD patterns suggested that the Cu2+ ion could enter the A or B site of the perovskite unit cell and replace the Nb5+ or Li+ simultaneously. The study also showed that the introduction of CuO effectively reduced the sintering temperature and improved the electrical properties of KNN-5LNS. The high piezoelectric properties of d33 = 263 pC/N, kp = 0.42, Qm = 143 and tan δ = 0.024 were obtained from the 0.4 mol% CuO doped KNN-5LNS ceramics sintered at 980 °C for 2 h.  相似文献   

20.
The CaMg1-xCr2x/3Si2O6 (0?≤?x?≤?0.1) microwave dielectric ceramics were synthesized via conventional solid state reaction. In this study, the effects of Cr3+ substituting for Mg2+ on morphology, crystal structure and microwave dielectric properties of CaMg1-xCr2x/3Si2O6 ceramics were explored. XRD diffraction patterns exhibited that the CaMg1-xCr2x/3Si2O6 ceramics possessed the pure phase of CaMgSi2O6 when x?≤?0.06 and a small amount of secondary phase Ca3Cr2(SiO4)3 for 0.08?≤?x?≤?0.1. SEM micrographs revealed that the substitution of Mg2+ with Cr3+ could decrease the grain size. The apparent density was affected by the concentration of Mg vacancies. The correlation between crystal structure and microwave dielectric properties was investigated through the Rietveld refinement and Raman analysis. The microwave dielectric properties were mainly dependent on relative density, ionic polarizabilities, internal strain ?, disordered structure and MgO6 octahedron distortions. Finally, CaMg1-xCr2x/3Si2O6 (x?=?0.02) ceramics sintered at 1270?°C for 3?h exhibited excellent microwave dielectric properties of εr?=?8.06, Q?×?f?=?89054?GHz, τf?=??44.92182?ppm/ºC.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号