首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 493 毫秒
1.
Bi2WO6 thin films with fast deposition rate have been fabricated by radio-frequency (R.F.) sputtering deposition, and are used as positive electrodes in rechargeable thin film lithium batteries. An initial discharge capacity of 113 μAh/cm2-μm is obtainable for Bi2WO6 film electrode with good capacity reversibility. A multiple-center reactive mechanism associated with both Bi3+/Bi0 and W6+/Wx+(x < 6) is investigated by ex situ X-ray diffraction patterns, transmission electron microscopy and selected area electron diffraction techniques, apart from the direct comparison of Bi2WO6 electrochemical performance with those of Bi2O3 and WO3 thin films. A possible explanation about smooth capacity loss of Bi2WO6 after long-term cycling is suggested from the incomplete reaction of Bi component. The advantages of Bi2WO6 thin films over the singer-center Bi2O3 or WO3 thin films are shown in both the aspects of volumetric capacity and cycling life.  相似文献   

2.
Pulsed laser deposition (PLD) was used to prepare tungsten trioxide (WO3) films on ITO substrates with a varying laser power density of 4.0–5.5 W/cm2. XPS indicated that when the laser power density decreased, the peak positions of the W 4f and O 1s orbits shifted slightly to low energy due to the difference in oxygen vacancies. As the laser power density decreased, W6+ gradually replaced the lattice position of O2?, increasing oxygen vacancies in the lattice. The transmittance modulated values (ΔT) were over 44% at 830 nm, indicating strong absorption by the WO3 thin films in the near-infrared ray. The switching time of the WO3 thin films between bleached states and coloured states decreased as the laser power density increased due to the amorphous structure, morphology, and lower oxygen deficiency at a high power density. The high ΔT and very fast switching time of tb (1.09 s) and tc (6.01 s) demonstrated the excellent electrochromic (EC) properties of the WO3 films prepared by PLD.  相似文献   

3.
《Ceramics International》2022,48(7):9400-9406
In the present study, we prepared vacancy-engineered V2O5-x films for electrochromic (EC) applications. To investigate the vacancy effect of V2O5-x films with high EC performance capabilities, precursor concentrations of V-based sol solutions were varied at 1 wt%, 5 wt%, and 10 wt%. Among them, V2O5-x films with a precursor concentration of 5 wt% (V2O5-5wt%) showed superior EC performance outcomes due to the (001)-plane-oriented crystal structure, which provides high electrical conductivity with the oxygen vacancy (Vo). In addition, the gravel-like uniform surface morphology with the optimized film thickness provides a stable electrochemical reaction during the EC measurement. As a result, V2O5-5wt% exhibited fast switching speeds (2.1 s for coloration and 3.6 s for bleaching), high transmittance modulation (ΔT) (51.32%), high coloration efficiency (CE) (52.3 cm2/C), and excellent cycle stability (85.85% ΔT retention after 500 cycles). In addition, V2O5-5wt% showed energy storage capability of 443.7 F/g at a current density of 2 A/g, thus proving its potential for use in multi-functional applications. Therefore, these results provide valuable insight related to the engineering of vacancies in EC films to achieve high-performance EC devices and additional multi-functional applications.  相似文献   

4.
《Ceramics International》2023,49(16):26683-26693
In this work, zero-dimensional (0D) high crystalline PrFeO3 worm nanocrystals were loaded over a three-dimensional (3D) rectangular WO3 to construct a 0D/3D PFO/W Z-scheme heterojunction by an in situ ultrasonic synthetic process. This heterojunction exhibited excellent photocatalytic activities towards the degradation of organic pollutants such as rhodamine B (RhB), Methylene blue (MB), and tetracycline hydrochloride (TC) in the presence of small amounts of H2O2 under visible-light irradiation. For example, the k value of PFO/W + H2O2 was about 67, 107, 45, 27, 11 and 14 times higher than pure H2O2, PrFeO3, WO3, PFO/W nanocomposite, PrFeO3+ H2O2 and WO3+H2O2 respectively during the degradation of MB. The trapping experiments and ESR measurements identified that the generated ·OH, ·O2, and h+ were the active species involved in the catalysis. Further, the ·OH radical could be continuously generated by Fe3+/Fe2+ and W6+/W5+ conversion and played the dominant role in the degradation of organic pollutants. The superior photocatalytic performance of the PFO/W + H2O2 system was derived from the synergistic effect of the Z-scheme heterostructure and dual photo-Fenton-like oxidation (Fe3+/Fe2+ and W6+/W5+). A possible mechanism was postulated based on the results obtained. In summary, this study provided new insights into synthesizing an effectively heterogeneous 0D/3D Z-scheme dual photo-Fenton-like catalyst for water clarification.  相似文献   

5.
Electrical conductivity measurements on EUROCAT V2O5–WO3/TiO2 catalyst and on its precursor without vanadia were performed at 300°C under pure oxygen to characterize the samples, under NO and under NH3 to determine the mode of reactivity of these reactants and under two reaction mixtures ((i) 2000 ppm NO + 2000 ppm NH3 without O2, and (ii) 2000 ppm NO + 2000 ppm NH3 + 500 ppm O2) to put in evidence redox processes in SCR deNOx reaction.It was first demonstrated that titania support contains certain amounts of dissolved W6+ and V5+ ions, whose dissolution in the lattice of titania creates an n-type doping effect. Electrical conductivity revealed that the so-called reference pure titania monolith was highly doped by heterovalent cations whose valency was higher than +4. Subsequent chemical analyses revealed that so-called pure titania reference catalyst was actually the WO3/TiO2 precursor of V2O5–WO3/TiO2 EUROCAT catalyst. It contained an average amount of 0.37 at.% W6+dissolved in titania, i.e. 1.07 × 1020 W6+ cations dissolved/cm3 of titania. For the fresh catalyst, the mean amounts of W6+ and V5+ ions dissolved in titania were found to be equal to 1.07 × 1020 and 4.47 × 1020 cm−3, respectively. For the used catalyst, the mean amounts of W6+ and V5+ ions dissolved were found to be equal to 1.07 × 1020 and 7.42 × 1020 cm−3, respectively. Since fresh and used catalysts have similar compositions and similar catalytic behaviours, the only manifestation of ageing was a supplementary progressive dissolution of 2.9 × 1020 additional V5+ cations in titania.After a prompt removal of oxygen, it appeared that NO alone has an electron acceptor character, linked to its possible ionosorption as NO and to the filling of anionic vacancies, mostly present on vanadia. Ammonia had a strong reducing behaviour with the formation of singly ionized vacancies. A subsequent introduction of NO indicated a donor character of this molecule, in opposition to its first adsorption. This was ascribed to its reaction with previously adsorbed ammonia strongly bound to acidic sites. Under NO + NH3 reaction mixture in the absence of oxygen, the increase of electrical conductivity was ascribed to the formation of anionic vacancies, mainly on vanadia, created by dehydroxylation and dehydration of the surface. These anionic vacancies were initially subsequently filled by the oxygen atom of NO. No atoms, resulting from the dissociation of NO and from ammonia dehydrogenation, recombined into dinitrogen molecules. The reaction corresponded to
. In the presence of oxygen, NO did not exhibit anymore its electron acceptor character, since the filling of anionic vacancies was performed by oxygen from the gas phase. NO reacted directly with ammonia strongly bound on acidic sites. A tentative redox mechanism was proposed for both cases.  相似文献   

6.
《Ceramics International》2023,49(7):10319-10331
This current work reports the 30 keV proton ion irradiation induced structural, morphological, and optical properties change in Ag45Se40Te15 films at different fluences. The thin films were irradiated with different ion fluences, such as 5 × 1015 ions/cm2,1 × 1016 ions/cm2 and 5 × 1016 ions/cm2. The electronic loss (Se) dominates over the nuclear loss (Sn) in proton irradiation. The X-ray diffraction study shows the phase transformation from amorphous to crystalline upon ion irradiation. The Raman analysis confirms the change in chemical and vibrational bonds due to structural alterations in the films. The surface morphology has been studied by field emission scanning electron microscopy and the composition of the films has been checked by the energy dispersive X-ray analysis. The particle size increased upon the increase in ion irradiation fluence. The surface roughness of the films has been studied by atomic force microscopy. The transmission data is used to calculate the linear optical parameters. The absorption edge shifts towards the high wavelength region inferring the reduction in the optical bandgap. The linear refractive index of the films increased with ion fluence. The optical density increased at the high wavelength region while the skin depth decreased with fluence. The carrier concentration per effective mass decreased while the plasma frequency increased with proton irradiation. The nonlinearity (χ (3) and n2) values increased significantly with the increase in fluences. Such kind of materials with optimization in their optical parameters are primarily essential for cutting-edge photonic, optoelectronic, and nonlinear optical applications.  相似文献   

7.
Chi-Lin Li 《Electrochimica acta》2008,53(22):6434-6443
Amorphous LiFe(WO4)2 thin films have been fabricated by radio-frequency (R.F.) sputtering deposition at room temperature. The as-deposited and electrochemically cycled thin films are, respectively, characterized by X-ray diffraction, scanning electron microscopy, transmission electron microscopy, selected area electron diffraction, and X-ray photoelectron spectra techniques. An initial discharge capacity of 198 mAh/g in Li/LiFe(WO4)2 cells is obtained, and the electrochemical behavior is mostly preserved in the following cycling. These results identified the electrochemical reactivity of two redox couples, Fe3+/Fe2+ and W6+/Wx+ (x = 4 or 5). The kinetic parameters and chemical diffusion coefficients of Li intercalation/deintercalation are estimated by cyclic voltammetry and alternate-current (AC) impedance measurements. All-solid-state thin film lithium batteries with Li/LiPON/LiFe(WO4)2 layers are fabricated and show high capacity of 104 μAh/cm2 μm in the first discharge. As-deposited LiFe(WO4)2 thin film is expected to be a promising positive electrode material for future rechargeable thin film batteries due to its large volumetric rate capacity, low-temperature fabrication and good electrode/electrolyte interface.  相似文献   

8.
High-entropy carbide ceramics (WTiVNbTa)C5 were prepared by spark plasma sintering and irradiated with 1.0 MeV C-ions at room temperature (RT) and 650 ℃. Irradiation induced damage evolution and mechanical properties change were investigated. GIXRD and TEM results showed that the irradiation led to lattice expansion and micro-strain formation in the samples, which originated from the irradiation induced defects. The black-dot defects dominated in the damaged microstructure at fluence of 1E16 ions/cm2 and transformed into dislocation loops and networks with the fluence increased at RT. Reduction of irradiation damage and formation of defect denuded zone were observed at 650 ℃. No amorphization or void formation were observed for all samples after irradiation. The irradiation hardening was most severe at fluence of 1E16 ions/cm2 and recovered at higher fluence or temperature, while the elastic modulus monotonically decreased. The correlation between microstructural evolution and mechanical properties response was discussed.  相似文献   

9.
This paper reports the comparative investigation on structural and optical modifications of Y2O3:Dy3+ phosphor after 150 MeV Ni7+ and 120 MeV Ag9+ swift heavy ions irradiation in the fluence range 1×1011–1×1013 ions/cm2. XRD and TEM studies confirm the loss of crystallinity of ion irradiated phosphors. Diffuse reflectance spectrum shows a blue shift in the absorption band resulting in an increase in band gap after ion irradiation. An increase in the intensity of photoluminescence peaks without any shift in the peak positions was observed with ion fluence. The color coordinates of ion irradiated phosphors approach the white light region with the increase of ion fluence.  相似文献   

10.
《Ceramics International》2020,46(8):11898-11904
Nanomaterials with ultraviolet/near-infrared (UV/NIR) shielding property have great potential for developing energy-saving windows. In this work, we report low-cost W18O49 nanorods as UV/NIR shielding material. W18O49 nanorods with the length of ~20 or ~60 nm were prepared by simple solvothermal method, and they exhibited strong size-dependent absorption in the UV/NIR region. By mixing W18O49 nanorods with polydimethylsiloxane (PDMS), W18O49@PDMS films were constructed and they could shield 55.58% of UV and 75.89% of NIR light while transmit 58.03% of visible light. A sealed box with W18O49@PDMS-coated glass as the window exhibited a minimal temperature elevation (△T = 9.2 °C) compared to those coated with pure glass (△T = 18.2 °C) or ITO glass (△T = 12.1 °C), under the irradiation of solar light (0.6 W cm−2). Additionally, the films had a contact angle of 122 ± 2°, showing self-cleaning ability. Therefore, W18O49@PDMS films can act as cost-efficient UV/NIR-shielding and self-cleaning film.  相似文献   

11.
《Ceramics International》2023,49(16):26505-26515
The current work is interested in the preparation, characterization, and mechanical-optical properties of the glasses in the (75-x)B2O3–10SrO–8TeO2–7ZnO−xWO3 system, with (x = 0 (BSTZW0), 1 (BSTZW1), 5 (BSTZW2), 10 (BSTZW3), 22 (BSTZW4), 27 (BSTZW5), 34 (BSTZW6), and 40 mol% (BSTZW7). The preparation of the glasses has involved the melt-quenching route. The new glasses are characterized by different characterization techniques using densimeter, microhardness, Raman spectroscopy, UV–visible absorption and emission, and X-ray diffraction. Photoluminescence can determine the impact of substituting B2O3 with WO3 on the mechanical-optical parameters and the structure of the present glasses. The prepared samples’ X-ray patterns showed amorphous states. The density value rises from 2.88 to 4.50 g/cm3, with the amount of WO3 rising from 0 to 40 mol% as a result of the difference in molecular weight between WO3 and B2O3. The Vickers microhardness (Hv) rises as the amount of WO3 increases as a result of a decrease in free volume and the formation of covalent bonds. The elastic moduli were found to increase when the WO3 concentrations increased from 0 to 40 mol%. This increase depends on the formation of bridging oxygen atoms. The Raman bands are designed to correspond to the bonds that form the structure of the current glass and detect the insertion of WO3 content by the attribution of the new W–O–W and W–O bonds. The UV–Visible spectroscopy analysis showed no band characteristic for the reduced species of W5+ ions identified by dark blue. However, the photoluminescence spectra showed emission bands (under excitation at 300 nm) that are associated with the active centers of W4+, W5+, and W6+ ions.  相似文献   

12.
Mn-doped β-Ga2O3 (GMO) films with room-temperature ferromagnetism (RTFM) are synthesized by polymer-assisted deposition, and the effects of annealing atmosphere (air or pure O2 gas) on their structures and physical properties are investigated. The characterizations show that the concentrations of vacancy defects and Mn dopants in various valence states and lattice constants of the samples are all modulated by the annealing atmosphere. Notably, the samples annealed in air (GMO–air) exhibit a saturation magnetization as strong as 170% times that of the samples annealed in pure O2 gas (GMO–O2), which can be quantitatively explained by oxygen vacancy (VO)-controlled ferromagnetism due to bound magnetic polarons established between delocalized hydrogenic electrons of VOs and local magnetic moments of Mn2+, Mn3+, and Mn4+ ions in the samples. Our results provide insights into mechanism-based tuning of RTFM in Ga2O3 and may be useful for design, fabrication, and application of related spintronic materials.  相似文献   

13.
We report on the use of pulsed KrF-laser irradiation for the in situ reduction of graphene oxide (GO) films under both vacuum and partial hydrogen pressure. By exposing GO films to 500 pulses of a KrF-laser, at a fluence of 10 mJ/cm2, their sheet resistance (Rs) is dramatically reduced from highly insulating (∼1010 Ω/sq) to conductive values of ∼3 kΩ/sq. By increasing the laser fluence, from 10 to 75 mJ/cm2, we were able to identify an optimal fluence around 35 mJ/cm2 that leads to highly conductive films with Rs values as low as 250 Ω/sq and 190 Ω/sq, under vacuum (10−5 Torr) and 50 mTorr of H2, respectively. Raman spectroscopy analyses confirmed the effective reduction of the KrF-laser irradiated GO films through the progressive recovery of the characteristic 2D band of graphene. Furthermore, systematic Fourier-transform infrared spectroscopy analysis has revealed that KrF-laser induced reduction of GO preferentially occurs through photodissociation and removal of carboxyl (COOH) and alcohol (OH) groups. A direct correlation is established between the electrical resistance of photoreduced GO films and their COOH and OH bond densities. The KrF-laser induced reduction of GO films is found to be more efficient under H2 background than under vacuum. It is concluded that our KrF-laser reduced GO films mainly consist of turbostratic graphite built from randomly organized few-layers-graphene building blocks, which contains some residual oxygen atoms and defects. Finally, by monitoring the KrF-laser fluence, it is shown that reduced GO films combining optical transmission as high as ∼80% along with sheet resistance as low as ∼500 Ω/sq can be achieved with this room-temperature and on-substrate process. This makes the laser-based reduction process developed here particularly attractive for photovoltaic hybrid devices using silicon substrates.  相似文献   

14.
《Ceramics International》2022,48(1):776-783
High-performance lead-free dielectric containers have excellent energy storage performance such as higher power density and energy density. While being eco-friendly materials, lead-free dielectric materials are more suitable for pulse power systems than other dielectric materials. In this study, Ta5+and Bi3+ ions were introduced into the A site and B site of the NaNbO3 matrix. The introduction of Bi3+ ions induced the formation of a vacancy in the A site, yielding Na(1-3x)BixNb0.85Ta0.15O3 (NBNT, x = 0.05, 0.08, 0.11, 0.14) ceramics. The recoverable energy density (Wrec) and the energy storage efficiency (η) were highest for the Na0.67Bi0.11Nb0.85Ta0.15O3 ceramic, with values of 3.37 J/cm3 and 89% respectively. Batteries employing the Na0.67Bi0.11Nb0.85Ta0.15O3 ceramic achieved a current density of 830.4 A/cm2, an energy density of 49.8 MW/cm3 and 60.2 ns discharge time. These results show that the Na0.67Bi0.11Nb0.85Ta0.15O3 ceramic is an effective energy storage material with broad application prospects.  相似文献   

15.
《Ceramics International》2023,49(4):6077-6085
Solid-phase method was used to synthesize MgMo1-xWxO4 (x = 0–0.15) ceramics. The influences of substitution Mo6+ with W6+ on crystal structure, vibration characteristics and microwave dielectric properties of MgMo1-xWxO4 ceramics were comprehensively studied. X-Ray diffraction illustrated all samples exhibit single-phase monoclinic wolframite structure when x = 0–0.15, in which W6+ replaces Mo6+ sites formed solid solution. W6+ effectively improves sintering properties of the MgMoO4, the average grain size and relative density were increased. Raman characterization reveals that suitable W6+ substitution amount leads to reduction of v1 Ag peaks FWHM and the enhancement of specific v3 Ag peak for Mo/WO4 tetrahedron, which improves the ordered distribution of the crystal structure. The above combined effect results in the increased Q × f value, but has little influence of W6+ substitution on εr and τf for MgMoO4. When x = 0.09, MgMo0.91W0.09O4 ceramic sintered at 1050 °C has optimal microwave dielectric performance: εr = 7.21, Q×f = 90,829 GHz, τf = ?67 ppm/°C.  相似文献   

16.
In this paper, a simple, reproducible and cost-effective solid-state reaction sintering process is developed to fabricate (K0.5Na0.5)NbO3-xBaNi0.5Nb0.5O3-δ (KNN-xBNN) ceramics with a narrow bandgap and room-temperature ferromagnetism. Here, we report a systematic investigation of the influence of the BaNi0.5Nb0.5O3-δ (BNN) concentration on the properties of KNN-xBNN ceramics. All ceramics form orthorhombic perovskite structures with a space group Amm2 and a weak peak at the wavelength of 550 cm?1 that is characteristic of the pillow shoulder of the orthorhombic phase. KNN-xBNN ceramics with x between 0.02 and 0.08 have a narrow bandgap of about 2.5 eV—much smaller than the 3.5 eV of its parent (K0.5Na0.5)NbO3 (KNN) ceramic—which is attributed to Ni2+-oxygen vacancy combinations (Ni2+-VO) raising the valence electron energy level of the KNN ceramic. Furthermore, doping BNN into KNN ceramics can significantly convert the magnetism from diamagnetism to ferromagnetism and the component of x = 0.08 achieves both maximum saturation magnetisation intensity (14 memu/g) and minimum coercive magnetic field (80 Oe). Our findings provide a systematic insight into the bandgap tunability and ferromagnetism induction at room temperature in lead-free perovskite KNN-xBNN ceramics, as well as demonstrate their potential applications in perovskite solar cells and multiferroic devices.  相似文献   

17.
In this work, cyclotetravanadate Na2SrV4O12 was synthesized at a relatively low sintering temperature of ∼500°C using a solid-state reaction method. X-ray diffraction and a transmission electron microscope characterization featured a tetragonal structure that was built by a 3D frame of isolated tetracyclic (V4O12)4−. Dielectric measurements demonstrated strong dependence on frequency and temperature. A low relative permittivity of εr ∼ 8 ± 0.2 and a dielectric (loss tanδ) ∼ 0.4 ± 0.01 was achieved at a frequency of 10 kHz and room temperature. ac impedance and conductivity analysis revealed a thermally activated migration behavior of charge carriers with a short-range hopping feature. XPS analysis validated the existence of oxygen vacancy and reduction in vanadium (from V5+ to V4+), which gave rise to charged lattice defects. The migration or hopping of such charged defects was responsible for the observed electrical behaviors. Owing to the simple composition, inexpensive raw materials and low density (2.99 g/cm3) make Na2SrV4O12 ceramic a potential candidate for lightweight devices and in photocatalytic degradation and all-solid-state ion batteries.  相似文献   

18.
Ceramic composites are promising candidates as structural materials for future fission and fusion reactors. In present work, Al2O3-ZrO2-SiC ternary ceramic composites were irradiated with 2.0 MeV He-ions at 300 and 800 ℃. Grazing incidence X-ray diffraction results confirmed that there was irradiation induced shift and broadening of diffraction peaks, but no amorphization of Al2O3-ZrO2-SiC composite were observed up to fluence of 1.72 × 1018 ions/cm2. Transmission electron microscopy observations showed that throughout the entire irradiation region, nano-sized helium bubbles are mostly distributed in Al2O3 grains and partly in ZrO2 grains, while no detectable bubbles are observed in SiC grains. No obvious agglomeration of bubbles was found at grain/phase boundaries. By using nanoindentation technique, slight hardening or softening was confirmed for the samples irradiated at 300 and 800 ℃ respectively. The absence of amorphization and surface exfoliation indicating the Al2O3-ZrO2-SiC composite exhibits remarkable resistance to He-ions irradiation.  相似文献   

19.
Undoped and MoO3- or WO3- doped lead phosphate glasses were prepared by the melting-annealing technique. The glasses were characterized through UV-visible and infrared measurements which were repeated after gamma irradiation. Optical spectrum of binary lead phosphate glass shows distinct ultraviolet bands correlated with unavoidable trace iron impurities within the chemicals used for the preparation of the glasses. UV-visible absorption spectra of MoO3- or WO3- doped glasses exhibit additional UV-visible bands which are related to the presence of four oxidation states of the two transition metal (molybdenum or tungsten) ions (Mo3+, Mo4+, Mo5+, Mo6+, W3+, W4+, W5+, W6+). The extra UV band is related to hexavalent (5d0) state while the rest of the visible bands are related to (350–440 nm - trivalent state), (450, 550, 650 nm - tetravalent state) while the broad band centered at about 770 nm (pentavalent state). The intensities of the absorption bands are observed to change with the transition metal content and their valencies. Infrared absorption spectra reveal distinct vibrational bands which are assigned to phosphate groups with sharing of Pb-O vibrations within both the range 460–620 cm-1 and the range 900–1100 cm-1 revealing a compact network structure. Gamma irradiation causes a minor increase in intensity of one of the UV band due to suggested photo-oxidation of some trace ferrous ions to additional ferric ions but the remaining spectral curve remains unaffected which is obviously related to some shielding effects of heavy atomic weight of PbO. This heavy metal oxide (PbO) is assumed to retard or prohibit the free passage of free electrons or positive holes generated during the irradiation process.  相似文献   

20.
Adsorption of NO on oxidized WO3–ZrO2 catalysts leads to formation of adsorbed N2O, surface nitrates, NO+, and Zr4+(NO- 3)–NO species. When NO is adsorbed on a sample reduced at 523 K, W5+ –NO (1855 cm-1) and W4+(NO)2 (1785 and 1700 cm-1) species are formed in low concentration. Reduction at 573 K increases the density of W4+ sites and this density remains unchanged after reduction up to 673 K. The W4+(NO)2 species are stable towards evacuation and in the presence of oxygen; however, they quickly disappear in the simultaneous presence of NO and O2 as a result of the oxidation of the W4+ cations to W6+. The density of the W4+ sites on a Pt/WO3–ZrO2 sample is significant even after reduction at 523 K. This is explained by the promotion effect of platinum on the support reduction. The use of NO as a probe molecule for detection of reduced W n+ sites on tungstated zirconia is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号