首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 62 毫秒
1.
Abstract— In order to increase the screen brightness of Digital Micromirror Device? projectors (DMD? projectors), we designed a new compact lamp. In our previous work, we discussed a lamp that has an aspherical lamp reflector and an aspherical front glass, which we called EHLa. Although EHLas improve the light convergence at the entrance of rod integrators, they require external lenses for light condensation. We, therefore, discuss a new EHLa that can converge light without the need for external lenses. The new lamp corresponds to conventional elliptic reflector‐type lamps, which are widely used for mobile‐type DMD? projectors. Our simulations demonstrated that the ratio of increased brightness is 17.1% for the new lamp design versus conventional lamps in a 0.7‐in.‐diagonal DDR DMD? panel.  相似文献   

2.
Abstract— A high‐definition laser TV that employs a newly developed laser light source and a super‐wide‐angle projection optical system has been developed. This adoption of a laser light source with three primary colors helped to achieve an extremely wide color gamut, and, in addition, a compact optical engine, which has been optimized to the laser light source and contributed to the achievement of the stylish design of a large screen of 65 in., with the depth being only 255 mm.  相似文献   

3.
Abstract— A novel laser‐light‐source projector having the three outstanding features of high brightness, ultra‐short throw distance, and high color reproduction has been developed.These features have recently come to be required in the high‐end projector market. The technologies for the laser‐light‐source projectors fully utilize the advantages of lasers, such as high luminance, small étendue, and high color purity. By integrating a triple‐rod illumination system with a multi‐laser light source and an ultra‐wide‐angle projection system, the developed high‐efficiency optical system has achieved a brightness of 7000 lm and a throw ratio of 0.28 with an image size of 100–150 in. Another new technology, laser color processing (LCP), has offered vivid color reproduction which has a color gamut that is up to 180% wider than the BT.709 standard without appearing unnaturally colored. Furthermore, a speckle suppression effect produced by the multi‐laser light source has been demonstrated. In this paper, an overview of these newly developed technologies that are used in the novel laser‐light‐source projector is presented, and solutions to the issues of speckle noise and safety are presented.  相似文献   

4.
Abstract— We have developed a new front projector with a super‐short projection distance of 0.65 m at 100 in. We installed a newly developed reflective‐type projection optical system in this projector, which was composed of only four aspheric mirrors that were free of color aberrations. Using this new system and a single‐chip DMD?, we projected a picture that had excellent sharpness and high contrast from 40 to 100 in. This paper describes the principles, design, and characteristics of the new WT600? front projector.  相似文献   

5.
Abstract— Projection systems have reached convincing performance with several thousand screen lumens created by systems of only a few liters in volume. With more than 10 lm/W they are the most efficient display systems realized today. The tremendous progress achieved up to now relies on the outstanding properties of the UHP lamp. The combination of high brightness with lifetimes extending up to more than 10,000 hours is ideal for projection applications. This paper will summarize some recent technological achievements: the volume of the lamp and driver system has been reduced by a factor of 10, exploiting a reduced ignition voltage as well as new optical concepts for the reflector. The optical performance of short‐arc projection lamps can be improved dramatically: a dichroic coating on one half of the UHP burner is applied to focus all light into one hemisphere. This allows for extremely compact reflector systems and an improvement by 20–30% in light collection.  相似文献   

6.
Abstract— This paper presents a new optical system used in an ultra‐thin rear projector with a 1500‐mm diagonal size and 260‐mm depth. A refractive‐reflective optical system was developed to achieve a large projection angle of 136° with a small optical distortion of 0.1%. The optics consists of a convex aspherical mirror and a refractive lens. In addition, a new Fresnel screen composed of hybrid blades of refractive‐TIR (total internal reflection) elements was developed to attain good uniformity of brightness and color within the image area.  相似文献   

7.
Abstract— The problem with front‐projection displays is that the screen contrast ratio decreases under bright‐ambient conditions. To overcome this problem, the design of a special screen, composed of the diffuser whose diffusing property shows top‐hat characteristics and a sawtooth reflector, is proposed. The screen diffuses the incident image light arriving at a projection‐angle range that is a lower‐angle range than the viewing‐angle range, and reflects the ambient light out of the viewing‐angle range. In this paper, the projection‐angle range and the viewing‐angle range was optimized to improve the contrast ratio of a front‐projection display. As a result, a special screen with the above‐mentioned diffusing property was realized, and a high‐quality front‐projection display with a high contrast ratio, even in a bright room, was achieved.  相似文献   

8.
Abstract— One problem with front‐projection displays is that the screen contrast ratio decreases in bright ambient light. In this paper, we propose a new front‐projection display system that incorporates the control of reflection of ambient light in the screen design, providing a high contrast ratio even in a brightly lit room.  相似文献   

9.
Abstract— Two pico‐projection systems, a monochrome green and a full‐color system, based on high‐efficiency OLED microdisplays (VGA; pixel size, 12 μm) are presented. Both optical systems are described by a numerical aperture of about 0.3, a magnification of 15x, and a working distance of 300–360 mm. The frequency limit of both systems is 42 cycles/mm at an image contrast of about 60%. The monochrome projection system with a volume smaller than 10 cm3 consists of one green OLED and a projection lens with five elements. The measured luminance in the image plane is about 0.061 lm. The image has a diagonal of 150 mm with a working distance of about 300 mm and has a considerable image contrast of 396:1. The second system combines three high‐brightness OLEDs, red, green, and blue colored, together with a projection lens and an image‐combining element, and an X‐Cube to achieve full‐color projection. The estimated luminance value for the three‐panel projection unit with an OLED luminance of 10,000 cd/m2 for each display will be about Φcalculated = 0.147 lm. In this paper, the system concepts, the optical designs, and the realized prototypes of the monochrome and full‐color projection system are presented.  相似文献   

10.
Abstract— A new front‐projection system for large screens by diffusing only projected light to wards the viewing‐angle range and reflecting ambient light towards the other angle ranges is proposed. With this system, a high‐quality and large‐sized front‐projection display with a high contrast ratio even in a bright room has been realized.  相似文献   

11.
This paper presents a practical prototype of a multi‐primary image projector system in which light source spectra can be programmable for suiting any purpose. Our multi‐primary projection system is mainly configured with a light source component and an image projection component. The programmable light source can reproduce any spectral curve. Spatial images are then generated using a digital mirror device chip that quickly controls the intensity of the light source spectra in 2D image plane. The multi‐primary images in our projection system are reproduced by multiplexing the time‐sequential images with different primary colors. Our multi‐primary image projector realizes not only wide gamut projection but also spectral projection. To achieve this, we also show how light source spectra of four or six primary colors are designed.  相似文献   

12.
Abstract— The Multi‐User 3‐D Television Display (MUTED), designed to provide three‐dimensional television (3‐D TV) by the display of autostereoscopic imagery to multiple viewers, each of whom should enjoy freedom of movement, is described. Such an autostereoscopic display system, which allows multiple viewers simultaneously by the use of head tracking, was previously demonstrated for TV applications in the ATTEST project. However, the requirement for a dynamically addressable, steerable backlight presented several problems for the illumination source. The MUTED system demonstrates significant advances in the realization of a multi‐user autostereoscopic display, partly due to the provision of a dynamic backlight employing a novel holographic laser projector. Such a technology provides significant advantages in terms of brightness, efficiency, laser speckle, and the ability to correct for optical aberrations compared to both imaging and scanned‐beam projection technologies.  相似文献   

13.
Abstract— Focusing cones (FOCON) have been designed for fiber‐optic communication systems as coupling devices. The main aim of these couplers is to match the spatial distribution of the light source or photodetector with the aperture configuration of light‐guiding modes of the optical fibers. In this paper, the application of a 2‐D array of FOCONs for collimating large‐sized optical beams in display devices is proposed. The design of a light‐efficient illumination unit for LCDs that can operate in the reflection mode as a backlight has been demonstrated. The approach proposed is based on the spatial separation of the light propagation in a FOCON array for reflected beams and light that comes from the backlight unit. The application of a FOCON array in backlight units and antiglare coatings has been demonstrated.  相似文献   

14.
Abstract— A LED backlight system with a double‐prism pattern for use in mobile phones to achieve thin and high luminance LED backlight systems is proposed. The double‐prism pattern is formed on the light guide of the proposed LED backlight system and simultaneously exhibited two optical functions: shifting of the light from the direction of the guided light toward the radiated light and controlling the directivity of the radiated light. Therefore, using the double‐prism pattern eliminates two prism sheets and a diffusive sheet, which are indispensable optical elements to exhibit the optical function that controls the directivity of light in conventional LED backlight systems. Consequently, the thickness of the proposed LED backlight system is reduced to 0.75 mm compared to that of the conventional system. A luminance of 3115 nits and a full‐width half maximum of 35° for radiated light, which are comparable to conventional LED backlight systems, were obtained.  相似文献   

15.
Abstract— A high‐pixel‐rate, high‐contrast (30,000:1) wide‐color‐gamut grating‐light‐valve laser projector is reported. A new optical engine enabling high‐frame‐rate (240 Hz) scan projection is employed. Panoramic wide‐angle‐scan projection with a 64:9 aspect ratio was also developed. Speckle noise is eliminated using a simple but highly efficient technique. The optical throughput efficiency of the grating‐light‐valve laser projector is reviewed.  相似文献   

16.
Abstract— Projection systems have found widespread use in conference rooms and other professional applications during the last decade and are now entering the home‐TV market with considerable pace. Projectors as small as about one liter are nowadays able to deliver a screen flux of several thousand lumens and are, with a system efficacy of more than 10 lm/W, the most‐efficient display system realized today. Because such highly efficient projectors employ microdisplays as light valves, short‐arc lamps are a key component in realizing these properties. The introduction of the UHP‐lamp system by Philips in 1995 can be identified as one of the key enablers for the commercial success of projection systems. The ultra‐high‐performance (UHP) lamp concept features outstanding arc luminance, a well‐suited spectrum, long life, and excellent flux maintenance. For the first time, it combines a very‐high‐pressure mercury‐discharge lamp having an extremely short and stable arc length with a regenerative chemical cycle that keeps the discharge walls free from blackening, leading to lifetimes of over 10,000 hours. In this review, the most important aspects of the UHP concept that enabled its success in the projection market are described, followed by a discussion of some recent additions to the UHP‐product portfolio.  相似文献   

17.
A new technology which enables a local brightness control according to the displayed images has been expected in the thin and lightweight backlight systems to improve a contrast ratio and power consumption of the liquid crystal displays (LCDs). In this paper, we have proposed a novel local‐dimming backlight system using alignment‐controlled polymer‐dispersed liquid crystals as a light‐guiding plate and investigated the forming conditions of polymer‐dispersed liquid crystals to achieve both a high‐luminance ratio and a fast response speed. As a result, we found that a luminance ratio and response speed of the backlight system can be improved by using bifunctional LC monomer materials and forming fine and rigid polymer network in the LCs, and achieved high luminance ratio of 16:1 and fast response time less than 0.5 ms. In addition, we fabricated the twisted nematic‐mode LCD using the local dimming light‐guiding plate‐type backlight based on this design, and successfully realized eight times higher contrast ratio than that of the traditional twisted nematic‐mode LCD.  相似文献   

18.
Abstract— A novel front‐light system that uses an organic light‐emitting‐diode (OLED) light source patterned with a fine pitch has been developed. The front‐light system has the following characteristics: (1) excellent uniformity within the light‐emitting area; (2) emittance that is consistent at all viewing angles; (3) no light leakage at any viewing angle from the side of the observer. This system can be adopted for reflective LCDs, electrophoretic displays (EPDs), microelectromechanical systems (MEMS), and other applications.  相似文献   

19.
Abstract— The demand for projectors with high brightness and wide color gamut has been increasing; however, UHP lamp projectors cannot deliver those two qualities efficiently and simultaneously because of its color‐separation system. The newly developed projection system — “Color‐Tuning Projection System” — realizes the adaptive combination of high brightness and wide color gamut with one projector. This projector features a fourth liquid‐crystal panel — “Color Tuner” — with a 3LCD optical engine, which controls yellow light separately from the RGB light of a UHP lamp. This color‐tuner‐based optical engine — “Color‐Tuning Optical Engine” — and a new color‐conversion signal‐processing algorithm — “Adaptive Color Conversion Algorithm” — controls the yellow‐light volume and corrects color‐shifted pixels according to the brightness and chromaticity analysis of the input image, key technologies of the Color‐Tuning Projection System. This additional panel system enables the projector to ach ieve up to 115% higher brightness and 120% wider color gamut according to the input image. This paper presents an innovative design concept, a novel technology regarding brightness and a color‐gamut conversion projection system, and the characteristics of the prototype.  相似文献   

20.
Abstract— The pixel brightness of an LCD panel perceived by a user is the product of the backlight brightness and the panel transmittance. In conventional LCD panels, the backlight brightness is constant and always at peak luminance. This design suffers from light leakage and power waste problems at dark scenes. This paper presents a new LCD system, which uses locally pixel‐compensated backlight dimming (PCBD). The proposed method combines backlight control and pixel processing for reducing light leakage and power consumption while keeping the image at the original brightness. Backlight luminance is dimmed locally in the dark‐image region, and pixel values are compensated synchronously according to the luminance profile of dimmed backlight. By reducing the light leakage, a static contrast of over 20,000:1 has been achieved on a large‐sized LCD panel with the proposed PCBD method. No obvious artifacts have been noticed as well. The power consumption of the panel can also be greatly reduced, depending on various video content. The PCBD method could be widely used for developing state‐of‐the‐art LCD panels with LED backlights.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号