首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 609 毫秒
1.
This paper presents a parallel processing searcher structure for the initial synchronization of a direct sequence ultra‐wideband (DS‐UWB) system, which is suitable for the digital implementation of baseband functionalities with a 1.32 Gsample/s chip rate analog‐to‐digital converter. An initial timing acquisition algorithm and a data demodulation method are also studied. The proposed searcher effectively acquires initial symbol and frame timing during the preamble transmission period. A hardware efficient receiver structure using 24 parallel digital correlators for binary phase‐shift keying DS‐UWB transmission is presented. The proposed correlator structure operating at 55 MHz is shared for correlation operations in a searcher, a channel estimator, and the demodulator of a RAKE receiver. We also present a pseudo‐random noise sequence generated with a primitive polynomial, 1+x2+x5, for packet detection, automatic gain control, and initial timing acquisition. Simulation results show that the performance of the proposed parallel processing searcher employing the presented pseudo‐random noise sequence outperforms that employing a preamble sequence in the IEEE 802.15.3a DS‐UWB proposal.  相似文献   

2.
钱枫  刘晓建 《压电与声光》2015,37(1):100-103
超宽带脉冲信号具有高时间分辨能力,能达到厘米级的定位精度。目前,脉冲超宽带测距定位系统中普遍采用基于能量检测的非相关到达时间(TOA)估计算法的性能通常受限于阈值门限和估计偏差。该文在原先锁相环方案基础之上引入延时迟支路和衰减因子,提出了一种易于实现的基于延迟锁相环的TOA估计算法。通过在迟支路中设置不同的衰减因子,仿真结果表明,在IEEE802.15.4a4种信道模型CM1~CM4中,新算法均能有效提升测距定位精度,即缩短了首达路径与锁相环稳态锁定点之间的时差,其估计偏差最低可降至原有方案的1/10。  相似文献   

3.
This letter proposes an energy‐detection‐based non‐data‐aided weighted non‐coherent receiver (NDA‐WNCR) scheme for impulse radio ultra‐wideband (IR‐UWB) pulse‐position modulated signals. Compared to the conventional WNCR, the optimal weights of the proposed NDA‐WNCR are tremendously simplified as the maximum eigenvector of the IR‐UWB signal energy sample autocorrelation matrix. The NDA‐WNCR serves to blindly obtain the optimal weights and entirely circumvent the transmission of training symbols or channel estimation in practice. Analysis and simulation results verify that the bit error rate (BER) performance of the NDA‐WNCR closely approaches the ideal BER of the conventional WNCRs.  相似文献   

4.
We propose a new preamble that can reduce the performance degradation because of the diminishing of operational complexity in coarse timing acquisition. The reduced‐complexity acquisition algorithm uses a received preamble that has been shortened by summing its elements group‐by‐group. Therefore, the performance deteriorates because it loses the impulsive autocorrelation property of the preamble after summation and correlation. In this paper, we design a preamble sequence with a sliding correlator output function that shows a distinct peak at zero delay and symmetry even after summation based on a flipping and doubly spreading concept. By comparing with other preamble sequences, we prove that the proposed preamble shows better timing acquisition performance in ultra‐wideband channel environment.Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

5.
In recent years, combining multiuser detection and intelligence computer scheme have received considerable attention. In this paper, adaptive fuzzy‐inference multistage matrix wiener filtering (FI‐MMWF) techniques, based on the minimum mean‐square error criterion, are proposed for ultra‐wideband (UWB) impulse radio communication systems. These FI‐MMWF‐based algorithms employ a time‐varying fuzzy‐inference‐controlled filter stage. Consequently, the proposed approaches accomplish a substantial saving in complexity without trading off the system performance and dynamic‐tracking characteristic. In addition, the fuzzy‐logic‐controlled matrix conjugate gradient algorithm is adopted to reduce the system complexity without trading off the bit‐error‐rate (BER). Simulations are conducted to evaluate the convergence and tracking behavior of the proposed MMWF algorithm, and the BER of the time‐hopping‐UWB system in a realistic UWB channel is investigated. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

6.
The impulse postfix OFDM (IP‐OFDM) system exploits the IP, which consists of a high power impulse sample and several zero samples at the end of a zero padded‐OFDM symbol block, to estimate channel impulse response (CIR) in time domain. In this paper, the impact of IP length on the BER performance of the IP‐OFDM system is analyzed. According to the analytic results, the BER performance can be significantly degraded with both a shorter length of IP as well as a longer length of IP than that of the CIR. Thus, an adaptive IP scheme, which adjusts the length of IP adaptively depending on the length of CIR, is proposed to enhance the BER performance of IP‐OFDM systems and its effectiveness is demonstrated by computer simulations. The BER performance of the IP‐OFDM systems with the proposed adaptive scheme is compared with that of the conventional IP‐OFDM system over various modulation schemes. Simulation results show that the IP‐OFDM with the proposed scheme can achieve about 2 dB performance enhancement compared with that of conventional systems at BER=10?2. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

7.
Recently, an improved transmitted reference (TR) signaling scheme, referred to as transmitted reference pulse cluster (TRPC), was proposed for low‐rate ultra‐wideband (UWB) communications. Compared with conventional TR, TRPC has a more compact and uniform spacing for the reference and data pulses and therefore addresses the implementation problems posed by the long delay line requirement, as well as provides better bit error rate (BER) performance. In this paper, a TRPC‐UWB system, which includes practical forward error correction (FEC) coding such as that specified in the IEEE 802.15.4a standard, as well as more powerful convolutional codes, is developed. A performance analysis, which highlights the importance of selecting appropriate FEC codes, is presented. Results show that with a suitable FEC code, the TRPC‐UWB system is a promising candidate for low‐rate wireless personal area networks. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

8.
We propose a direct‐sequence pulse‐amplitude modulation (DS‐PAM) ultra‐wideband (UWB) system which employs a non‐linear chirp waveform instead of the conventional Gaussian monocycle in this paper. In the approved frequency for UWB, there exist myriad narrowband interferers. Specifically, we focus on the mutual interference between UWB systems and 802.11a WLAN. This paper offers a method to suppress this inband narrowband interference by introducing a kind of non‐linear chirp waveform. Using the proposed non‐linear chirp waveform, the effects of one or more narrowband interference sources with different frequencies can be suppressed. System performance of UWB systems in the narrowband interference environment can be improved. Computer simulations with additive white Gaussian noise successfully demonstrate an increase in performance with the proposed system as compared to traditional linear chirp systems.  相似文献   

9.
Because of the very low signal duty cycles, synchronization is the most critical issue in ultra wideband (UWB) impulse radio (IR) systems. Some effective synchronization schemes like a symbol‐differential (SD) IR‐UWB receiver have been proposed to synchronize received signals rapidly. Yet, SD IR‐UWB receiver is unsuitable for operation in multi‐user environment because of multiple access interference (MAI). By taking advantage of frame‐differential IR‐UWB receivers, we propose a parallel frame‐differential (PFD) IR‐UWB receiver to do so. Our proposed PFD IR‐UWB receiver manifests better immunity against message passing interface and MAI than the SD IR‐UWB. Based on this PFD IR‐UWB receiver, uncertain (search) regions are limited to one frame duration without any symbol‐level synchronization process. Performance of PFD and SD receivers are compared by computer simulations, showing that the proposed PFD receiver not only achieves significant bit error rate performance but also better and more robust results than the SD receiver in this literature. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

10.
The mutual interference between the two ultra wideband (UWB) technologies, which use the same frequency spectrum, will be a matter of concern in the near future. In this context, we present a performance analysis of direct‐sequence (DS) UWB communication in the presence of multiband orthogonal frequency division multiplexing (MB‐OFDM) UWB interfering transmissions. The channel fading is modeled according to Nakagami‐m distribution, and multi‐user interference is taken into account. The DS‐UWB system performance is evaluated in terms of bit error rate (BER). Specifically, using the characteristic function approach, an analytical expression for the average BER is derived conditioned on the channel impulse response. Numerical and simulation results are provided and compared for different coexistence scenarios. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

11.
This brief describes a fast-lock mixed-mode delay-locked loop (DLL) for wide-range operation and multiphase outputs. The architecture of the proposed DLL uses the mixed-mode time-to-digital-converter scheme for a frequency-range selector and a coarse tune circuit to reduce the lock time. A multi-controlled delay cell for the voltage-controlled delay line is applied to provide the wide operating frequency range and low-jitter performance. The charge pump circuit is implemented using a digital control scheme to achieve adaptive bandwidth. The chip is fabricated in a 0.25-mum standard CMOS process with a 2.5-V power-supply voltage. The measurements show that this DLL can be operated correctly when the input clock frequency is changed from 32 to 320 MHz, and can generate ten-phase clocks within a single cycle without the false locking problem associated with conventional DLLs and wide-range operation. At 200 MHz, the measured rms random jitter and peak-to-peak deterministic jitter are 4.44 and 15 ps, respectively. Moreover, the lock time is less than 22 clock cycles. This DLL occupies less area (0.07 mm2) and dissipates less power (15 mW) than other wide-range DLLs.  相似文献   

12.
In direct‐sequence code division multiple access (DS/CDMA) multiuser communication systems in multipath channels, both intersymbol interference (ISI) and multiple‐access interference (MAI) must be considered. The multipath channel characterizes the propagation effects including the timing offset and delays, etc. Traditionally, we use the delay‐locked loop (DLL) code tracking loop to recover the timing delay. But DLL cannot work well in multipath environment. In this paper, we propose a low‐complexity adaptive receiver to suppress ISI/MAI and solve the timing offset problems without using conventional DLL code tracking loop. The proposed receiver employs an adaptive filter whose weights are adapted using a block least‐mean square error algorithm with fractional sampling. Simulations confirm the good performance, including learning curves and theoretical analysis of minimum mean‐square error, of the proposed receiver. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

13.
In order to alleviate multiple access interference and multipath interference of ultra‐wideband (UWB) system, we propose the orthogonal complementary code (OCC)‐based direct‐sequence UWB system and offset‐stacking (OS)‐UWB system. OCC has perfect partial autocorrelation and cross‐correlation characteristics. With the application of OCC in UWB system, we can obtain better performance in multiple access interference and multipath interference. The proposed OS‐UWB structure can also achieve variable data rate transmission because of its innovative OS spreading technique. Theoretical analysis and simulation results show that the proposed UWB system can achieve excellent performance and outperform the unitary code‐based direct‐sequence UWB system. Copyright © 2013 John Wiley & Sons, Ltd.  相似文献   

14.
In this paper, we propose a direction finding (DF) receiver for ultra wideband impulse radio (UWB‐IR) signal in a realistic multipath environment. The receiver uses an array of antenna, where each antenna is connected to a proposed propagation‐delay estimation structure. The advantage of the proposed structure is that it outputs a trapezoidal signal whose amplitude reflects the propagation delay and thus relaxes the sampling rate requirement of the analog‐to‐digital‐converter (ADC). The angle‐of‐arrival (AOA) is estimated from the vector of propagation delays measured with respect to reference antenna. Because these estimated delays contain outliers, we propose a simple AOA estimation algorithm based on minimum fractional‐distance search. Experimental results based on simulation show that the proposed DF receiver achieves better performance compared with the minimum ?1‐ and ?2‐based (least‐squares based) distance search. Copyright © 2010 John Wiley & Sons, Ltd.  相似文献   

15.
We study the problem of adaptive channel estimation for a multipath channel on an ultrawideband (UWB) impulse radio (IR) system. The purpose of the work is to demonstrate that the statistical characteristics of the UWB‐IR environment are strongly non‐Gaussian and that as a result, non‐Gaussian signal processing techniques are both efficient and powerful in a UWB‐IR environment. The multipath channel estimation problem has been chosen as an illustrative example because UWB‐IR systems often operate in complex multipath environments. We study both blind and training‐based estimation techniques and demonstrate that even simple non‐Gaussian strategies can achieve significant performance improvement when compared to more common second‐order estimation techniques. Copyright © 2006 John Wiley & Sons, Ltd.  相似文献   

16.
Global positioning system (GPS) receivers find growing applications in indoor and outdoor communication environments, including urban and rural areas. Interference and noise sources for GPS receivers may assume Gaussian or non-Gaussian distributions. The GPS receiver performance under Gaussian additive noise has been studied. Non-Gaussian noise may equally contaminate the GPS satellite signals and disturb the receiver delay lock loops (DLL), producing significant tracking errors. These sources include impulsive noise, ultra-wideband (UWB) signals, and impulse and noise radar signals for target tracking and indoor imaging applications. This paper considers non-Gaussian noise of finite variance and examines its effect on the discriminator outputs for the commercial GPS receiver that uses the coarse acquisition (C/A) code. The correlator noise output components are produced from the correlation between the noise sequence and the early, late, and punctual reference C/A code. Due to the long time averaging, which is characteristic of the GPS correlation loops, these components assume Gaussian distributions. The discriminator tracking error variance is derived, incorporating the effect of noise, the front-end precorrelation filter, and the sampling rate.  相似文献   

17.
Conventional synchronization algorithms for impulse radio require high‐speed sampling and a precise local clock. Here, a phase‐locked loop (PLL) scheme is introduced to acquire and track periodical impulses. The proposed impulse PLL (iPLL) is analyzed under an ideal Gaussian noise channel and multipath environment. The timing synchronization can be recovered directly from the locked frequency and phase. To make full use of the high harmonics of the received impulses efficiently in synchronization, the switching phase detector is applied in iPLL. It is capable of obtaining higher loop gain without a rise in timing errors. In different environments, simulations verify our analysis and show about one‐tenth of the root mean square errors of conventional impulse synchronizations. The developed iPLL prototype applied in a high‐speed ultra‐wideband transceiver shows its feasibility, low complexity, and high precision.  相似文献   

18.
Space–time coded multiple‐input multiple‐output (MIMO) technology is an important technique that improves the performance of wireless communication systems significantly without consuming bandwidth resource. This paper first discusses the characteristics and limitations of traditional symbol‐level space–time coding schemes, which work largely on the basis of an assumption that signals are sent to a block‐fading channel. Therefore, the symbol‐level space–time coding schemes rely on symbol‐level signal processing. Taking advantage of orthogonal complementary codes, we propose a novel MIMO scheme, in this paper, based on chip‐level space–time coding that is different from the traditional symbol‐level space–time coding. With the help of space–time–frequency complementary coding and multicarrier modem, the proposed scheme is able to achieve multipath interference‐free and multiuser interference‐free communications with simple a correlator detector. The proposed chip‐level space–time coded MIMO works well even in a fast fading channel in addition to its flexibility to achieve diversity and multiplexing gains simultaneously in varying channel environments. Copyright © 2012 John Wiley & Sons, Ltd.  相似文献   

19.
We proposed the support vector machine (SVM)‐based equalisation schemes for direct‐sequence ultra wideband (UWB) systems. The severe intersymbol interference caused by the UWB channel was formulated as a pattern classification problem in the SVM‐based equaliser, which operates in two main modes: training and detection. We also applied the least squares support vector classifiers (LS‐SVCs) to reduce the training complexity and sparse LS‐SVCs to reduce the detection complexity, with little performance loss compared to SVCs. Simulation results confirm the outperformance of the proposed equalisers over the conventional rake receiver with the same order of complexity for detection, especially when no channel information is known at the receiver. Also, the SVM‐based equalisers in the line‐of‐sight scenario provide a performance close to the case with additive white Gaussian noise only. Copyright © 2011 John Wiley & Sons, Ltd.  相似文献   

20.
A cross‐level pre‐RAKE combining (PRC) scheme for time hopping pulse amplitude modulation ultra wideband (TH‐PAM UWB) transmitter is studied in this paper. A two‐stage cross‐level PRC (CL‐PRC) scheme is proposed. The conventional PRC schemes suppress all the chip‐wise interference. However, the proposed scheme suppresses only the specific frame‐wise inter‐symbol interference (ISI) by exploiting the characteristic that the information bits are transmitted only at ultra short time slots. This results in a low complexity pre‐equalizer without bit error rate (BER) performance degradation. Furthermore, an order selection rule is presented to achieve the tradeoff between signal‐to‐interference ratio (SIR) and computational complexity. Simulation results illustrate the superior SIR and BER performance of our proposal. Copyright © 2009 John Wiley & Sons, Ltd.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号