首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 187 毫秒
1.
张敏  陈赟  龚沂 《冶金分析》2015,35(10):54-59
采用四硼酸锂-偏硼酸锂混合熔剂[m(Li2B4O7)∶m(LiBO2)=67∶33],稀释比为8∶1,脱模剂为10滴300 g/L碘化铵溶液,预氧化温度和时间分别是600 ℃和200 s,熔融温度和时间分别为1 050 ℃和7.5 min的熔样条件,实现了熔融制样-X射线荧光光谱法(XRF)对石灰石和白云石中CaO、MgO、SiO2、Al2O3、Fe2O3、MnO、K2O、P2O5等组分的准确测定。选择石灰石、白云石标准样品及由标准样品人工合成的校准样品进行校准曲线的绘制,各组分的相关系数均可达到0.99以上。采用OXSAS软件提供的AC+MC综合模式进行谱线重叠干扰校正和基体校正,效果良好。选择标准样品进行精密度考察,各组分测定结果的相对标准偏差(RSD,n=12)均小于3%。石灰石、白云石标准样品和实际样品的测定结果与认定值或其他方法测定值进行比较,结果基本相符。  相似文献   

2.
采用熔融制样,以土壤、水系沉积物、岩石、铁矿石、铝土矿等标准物质拟合校准曲线,建立了X射线荧光光谱(XRF)同时测定硅酸盐和铝土矿中主次量组分(SiO2、Al2O3、Fe2O3、TiO2、K2O、Na2O、CaO、MgO、P2O5、MnO)的快速分析方法。确定熔融条件如下:样品与四硼酸锂-偏硼酸锂(质量比为67∶33)混合熔剂在熔融稀释比例为1∶10条件下混合均匀,加入2 mL 500 g/L NH4NO3溶液、0.5 mL 300 g/L NH4Br溶液,于700 ℃预氧化,1 100 ℃温度下熔融。解决了每种矿种都要建立一套分析方法,不能同时测定多种类型地质样品的问题。采用实验方法对GBW07178、GBW07179铝土矿标准物质各组分进行测定,结果的相对标准偏差(RSD,n=12)小于5%,相对误差(RE)小于10%。采用实验方法测定硅酸盐和铝土矿样品,所得结果与湿法值一致。  相似文献   

3.
环境土壤中组成复杂,为了能够同时检测土壤中主次组分,建立了熔融制样-X射线荧光光谱法(XRF)测定环境土壤中主次组分的方法。为了防止腐蚀铂-金坩埚,实验先对环境土壤样品进行预氧化,即在800℃马弗炉灼烧2 h;再以四硼酸锂-偏硼酸锂混合熔剂(m(Li2B4O7)∶m(LiBO2)=67∶33)作为熔剂,确定稀释比为10∶1,以溴化锂为脱模剂,在1 050℃熔融10 min,制得玻璃熔片。选择土壤系列套标绘制校准曲线,并采用经典系数法对校准曲线进行校正,建立环境土壤中SiO2、TiO2、Al2O3、Fe2O3、Mn3O4、MgO、CaO、Na2O、K2O、P2O5、SO3、V2O5  相似文献   

4.
硅藻土是一种重要的非金属矿产,其主次组分的测定一般采用重量法、滴定法等,操作过程繁琐、化学试剂用量大、分析周期长。实验采用熔融法制样,X射线荧光光谱法(XRF)同时测定硅藻土中SiO2、Al2O3、Fe2O3、CaO、MgO、TiO2等主次组分。选择高纯试剂人工合成校准样品系列,用测定烧失量后的样品制备玻璃熔片,克服了缺少硅藻土标准物质及烧失量对测定结果的影响。样品与四硼酸锂-偏硼酸锂-氟化锂混合熔剂(质量比为4.5∶1∶0.4)的稀释比为1∶10,LiBr溶液作为脱模剂,在1050℃熔融9min制备熔融片。各组分校准曲线的线性相关系数在0.9962~0.9999之间;方法检出限在18~266μg/g之间。按照实验方法测定硅藻土样品中SiO2、Al2O3、Fe2O3、CaO、MgO、TiO2,测定结果的相对标准偏差(RSD,n=8)在0.25%~1.4%之间。所建方法应用于相近标准物质(GBW03103软质粘土和GBW03114硅质砂岩)和4种不同品位的硅藻土样品中各组分的测定,测定结果与标准物质认定值或实际样品湿法测定值基本一致。  相似文献   

5.
X射线荧光光谱法测定锆矿中10种主次成分   总被引:1,自引:0,他引:1       下载免费PDF全文
采用四硼酸锂和偏硼酸锂混合熔剂熔融制样,利用X射线荧光光谱仪(XRF)测定锆矿中的ZrO2、HfO2、MgO、Al2O3、SiO2、P2O5、CaO、TiO2、Fe2O3、BaO等10种主次成分含量。利用锆矿标准物质及锆矿标准物质与基准试剂SiO2、Al2O3、TiO2、Fe2O3、CaCO3、KH2PO4、MgO、BaO、HfO2按一定比例混合配制的系列校准样品绘制校准曲线,满足各成分的含量梯度。选择0.450 0 g样品加入9.000 g混合熔剂(m四硼酸锂∶m偏硼酸锂=12∶22)、熔样时间为15 min、熔融温度为1 050 ℃、无需加脱模剂进行熔融,熔样效果好。选择ZrLα线避免了ZrKα线以及ZrKβ线穿透样片的问题;采用变异α系数校正基体效应。对锆矿石标准样品及自制校准样品进行分析,各成分的测定值与认定值或参考值相吻合;精密度考察结果表明各成分测定结果的相对标准偏差在0.29%~7.9%之间。  相似文献   

6.
消泡剂采用四硼酸锂和偏硼酸锂混合熔剂[m(Li2B4O7)∶ m(LiBO2)=67∶33],稀释比为1∶10,滴加5滴200 g/L溴化铵溶液做脱模剂,在950 ℃下熔融18 min制备熔片。采用石灰石标准样品中添加基准碳酸钠的合成校准样品来绘制校准曲线,建立了X射线荧光光谱法(XRF)对铁水预处理脱硅消泡剂中二氧化硅、三氧化二铝、氧化钙、氧化镁、三氧化二铁和氧化钠等主次成分进行同时测定的方法。将烧失量作为消去组分处理,使用COLA模式校正,校正后的曲线能够准确测定未灼烧样品中主次成分的含量,大大缩短了分析时间。经验证,各组分测定结果的相对标准偏差(n=11)都在2%以内,消泡剂实际样品的分析结果与化学法分析结果吻合较好。  相似文献   

7.
准确测定土壤矿物质成分可以了解土壤肥力状况,有助于合理施肥、改善土壤质量。实验通过样品前处理条件的优化,建立了偏硼酸锂-四硼酸锂混合熔剂(m∶m=33∶67)熔融,盐酸-酒石酸提取,电感耦合等离子体原子发射光谱法(ICP-AES)测定土壤中SiO2、Al2O3、Fe2O3、K2O、Na2O、CaO、MgO、TiO2、MnO、P2O5、Ba、V、Sr、Zr 14项主要成分的测定方法。试验结果表明:熔剂与样品质量比为5∶1时熔融效果较好;使用盐酸-酒石酸为提取液可以抑制Ti、Zr水解;采用基体匹配法绘制校准曲线可消除基体效应的影响。14种成分校准曲线的线性相关关系均在0.999以上;各成分的检出限为0.32~39.27μg/g。采用实验方法测定土壤成分分析标准物质GBW07402,各成分测定值与认定值基本一致,相对误差(RE)为-0.43%~1.88%,相对标准偏差(RSD...  相似文献   

8.
熔融制样-X射线荧光光谱法测定锰矿中9种组分   总被引:2,自引:1,他引:1       下载免费PDF全文
探讨了熔融制样-X射线荧光光谱法测定锰矿中TMn、TFe、SiO2、Al2O3、CaO、MgO、TiO2 、P2O5、K2O等常见组分的分析方法。对试样进行烧损校正,采用国家标准物质和以国家标准物质为基体制备的校准样品,建立了基体校正后的校准曲线。通过试验确定以四硼酸锂为熔剂、硝酸铵为氧化剂、熔融中间和定型前分2次加入总量为0.15 g的NH4I脱模剂,采用1∶12.5的稀释比例高温熔融制样。方法用于锰矿标准样品与实际样品分析,标准样品的测定值与认定值一致,实际样品的分析结果与其他方法的结果吻合,满足了生产现场快速分析的需要。  相似文献   

9.
准确测定矾土中的主次成分对确定钒土等级及选择冶炼生产工艺参数具有重要意义。矾土中10余种主次成分含量范围较宽,常需采用两种及以上分析方法分别进行测定。实验用矾土标准样品及成分与矾土相似的3个粘土标准物质绘制校准曲线,以变化理论α系数校正法对基体效应进行校正,以Spectra plus软件进行烧失量校正,建立了熔融制样-X射线荧光光谱法(XRF)对矾土中主次成分(Al2O3、CaO、MgO、P2O5、Fe2O3、TiO2、MnO、SiO2、K2O、Na2O)的测定。实验表明,以四硼酸锂-偏硼酸锂混合熔剂(质量比为67∶33)为熔剂,控制样品稀释比为1∶23,将样品和熔剂搅拌均匀后加入1.0 g硝酸锂于600℃预氧化5 min,升至1 075℃熔融制样10 min,期间分3次加入共50 mg碘化铵为脱模剂,可制成均匀、透明的玻璃片。考察了Spectra plus软件和对样品...  相似文献   

10.
钒钛磁铁矿中的铁和伴生组分是制造钢铁、合金的主要材料,以往采用多方法结合测定其主次元素,测量周期长,成本高。实验采用混合熔剂熔融制样后,使用X射线荧光光谱法(XRF)测定钒钛磁铁矿中TFe、TiO2、SiO2、Al2O3、CaO、MgO、V2O5、Cr2O3、MnO、K2O、Na2O、P等12种主次组分。为了防止试样对铂-金坩埚的腐蚀,采用预先烧失量处理。称量0.3000g样品与6.000g混合熔剂(m(Li2B4O7)∶m(LiBO2)=67∶33)于1050℃熔融,在熔样过程中添加溴化锂作为脱模剂。选用标准样品绘制校准曲线,采用理论α系数进行计算,校准曲线回归精度(SEE)小于0.3;方法中各组分检出限小于100μg/g。选取同一个样品进行熔融制样,并采用XRF测定其中TFe、TiO2、SiO2、Al2O3、CaO、MgO、V2O5、Cr2O3、MnO、K2O、Na2O、P等组分,测定结果的相对标准偏差(RSD,n=5)符合DZ/T 0130—2006《地质矿产实验室测试质量管理规范》要求。选取4个样品,分别按照实验方法和其他方法(分别采用滴定法、电感耦合等离子体原子发射光谱法、分光光度法等)对上述12种组分进行测定,两种方法所得测定结果差值均符合DZG 93—07《岩石和矿石分析规程》中《钒钛磁铁矿石分析规程》所要求的允许误差范围。  相似文献   

11.
根据3种不同类型镍矿床选取了20个镍矿石标准物质绘制校准曲线,解决了镍矿石赋存状态的复杂性问题。采用混合熔剂(m(Li2B4O7):m(LiBO2):m(LiF)=4.5:1:0.4)和标准物质以质量比为40:1进行稀释熔融,加入1 g氧化剂LiNO3、6滴加入脱模剂LiBr溶液(1 g/mL),针对Cu含量高的铜镍硫化矿样品在熔融时易脆裂和裂痕的问题,采用加入LiBr溶液后用混合熔剂完全覆盖的方法有效防止Br的挥发,成功地制备出高精度的玻璃熔片。建立了测定镍矿石中NiO、Cr2O3、CuO、PbO、MgO、ZnO、SiO2、Al2O3、MnO、TiO2、CoO、TFe2O3、CaO、K2O、Na2O、P2O516种主次成分的定量分析方法。采用此方法分析GBW07147国家镍矿石标准物质,16种主次成分测定结果的相对标准偏差(RSD)为0.09%~4.5%,对不参加建立校准曲线的GBW07148、GBW07196国家镍矿石标准物质进行分析,分析结果与认定值相符合,满足日常生产任务需要。  相似文献   

12.
标准方法GB/T 4984—2007对于含锆耐火材料中主次组分的测定需要多种方法相结合,较为繁琐。采用选择日本耐火材料协会X射线荧光光谱分析专用锆质耐火材料系列标样和ZrO2基准试剂混合配制2个校准样品,用该系列标准样品和校准样品制备出12个标准样品/校准样品玻璃片,建立了测定锆质耐火材料中11种主次组分(ZrO2、HfO2、Cr2O3、MgO、CaO、SiO2、Al2O3、Fe2O3、TiO2、K2O、Na2O)的X射线荧光光谱分析方法。实验表明,控制称样量为0.400 0 g,采用Li2B4O7-LiBO2(mm=12∶22)混合熔剂和1∶15的稀释比,加入0.2 mL 300 g/L NH4I溶液为脱模剂,于1 050 ℃下熔融15 min,熔出的样片均匀光滑,达到检验要求。选择ZrLɑ和HfLβ1线为分析谱线,克服了ZrKɑ谱线荧光强度过高的影响;通过谱线校正消除谱线干扰,依据经验α系数法进行基体校正,扣除了样品中各元素的吸收增强效应。校准曲线精密度品质因子小于0.07,各组分检出限为0.007%~0.024%之间。采用实验方法对锆质耐火材料样品进行检测,各组分测量结果的相对标准偏差(RSD)在0.24%~4.9%之间。选择由专用锆质耐火材料系列标准样品和ZrO2基准试剂混合配制的合成样品,分别采用实验方法和标准方法GB/T 4984—2007或GB/T 6900—2016对11种组分进行分析,发现实验方法和标准方法测定值保持一致,实验方法与参考值的误差在标准方法允许差范围内。  相似文献   

13.
标准中针对铝镁尖晶石的分析多采用湿法或者波长色散X射线荧光光谱法。随着能量色散X射线荧光光谱仪的迅速发展,其在多个行业的元素分析中得到了广泛应用。实验通过熔融制样,利用能量色散X射线荧光光谱仪建立了铝镁尖晶石中Al2O3、MgO和SiO2的测定方法。由于铝镁尖晶石无现成标准样品,实验选用合适的特优矾土、高纯镁砂等标准样品;同时,根据其生产工艺将特优矾土标准样品和高纯镁砂标准样品,以及氧化铝基准物质和高纯镁砂标准样品合成系列校准样品。固定称样量为0.5000g,样品与无水四硼酸锂(Li2B4O7)熔剂的稀释比为1∶16,以4滴0.5g/mL NH4Br溶液为脱模剂在1150℃下进行熔样的效果较好。以标准样品和校准样品绘制校准曲线,Al2O3、MgO、SiO2校准曲线的均方根(RMS)分别为0.916、0.888和0.029。对镁铝砖标准样品进行精密度考察,Al2O3、MgO和SiO2的相对标准偏差(RSD,n=5)分别为1.4%、0.42%和3.1%;对铝镁砖标准样品和铝镁耐火物标准样品以及铝镁尖晶石试样进行分析,Al2O3、MgO、SiO2的分析结果与认定值或湿法测定值基本一致,满足生产检验要求。  相似文献   

14.
于丽丽 《冶金分析》2019,39(10):37-42
稀土矿种类繁多,矿物组成复杂,常富含Ca、P、Fe、Ba、Si、S、Mn、Pb等元素,而采用熔融法制样时,富含Fe、Mn、Pb等单质元素的稀土矿样会腐蚀Pt-Au坩埚。试验将稀土矿石与混合熔剂[m(Li2B4O7)∶m(LiBO2)=33∶67]以质量比1∶14(稀释比)混合,再加入1mL 500g/L NH4NO3溶液为氧化剂、0.2mL 100g/L LiBr溶液为脱模剂,在1050℃下熔融制成均匀玻璃片,使用波长色散X射线荧光光谱法(WDXRF)测定轻稀土矿石中La2O3、CeO2、Pr6O11、Nd2O3、Sm2O3、Eu2O3、Gd2O3、Y2O3等8种主量稀土氧化物。方法中稀土氧化物的检出限为5~159μg/g。实验方法用于测定两个稀土矿石标准物质GSB04-3549-2019(稀土总量为4.44%)和GSB04-3309-2016(稀土总量为29.09%)中8种稀土氧化物,低品位稀土矿石标准物质(GSB04-3549-2019)中稀土氧化物测定结果的相对标准偏差(RSD,n=7)小于13%,高品位稀土矿石标准物质(GSB04-3309-2016)中稀土氧化物测定结果的相对标准偏差(RSD,n=7)小于2%。选取2个轻稀土矿石样品(稀土总量分别为2.55%和24.64%),按照实验方法进行稀土总量的加标回收试验,回收率为96%~100%。选取2个稀土矿石标准物质GSB04-3550-2019和GSB04-3311-2016以及2个轻稀土矿石样品,按照实验方法测定La2O3、CeO2、Pr6O11、Nd2O3、Sm2O3、Eu2O3、Gd2O3、Y2O3,测定值与标准值或电感耦合等离子体原子发射光谱法(ICP-AES)测定值相吻合。实验方法具有较广的适应性,能满足复杂矿物组成轻稀土矿石中主量稀土氧化物的检测。  相似文献   

15.
将110 ℃烘干的样品在700 ℃高温焙烧后, 采用混合熔剂(mLiB2O4 mLiBO2 mLiF=4.5∶1∶0.4)和样品以30∶1的质量比进行稀释, 加入2 g 硝酸铵为氧化剂, 加入溴化锂溶液为脱模剂熔融制样, 使用康普顿散射线内标法结合经验系数法对基体效应进行校正, 建立了测定铅锌矿石中铅、锌、铜、二氧化硅、三氧化二铝、全铁、二氧化钛、氧化锰、氧化钙、氧化镁、氧化钾、氧化钠、锑、铋、银15种组分的X射线荧光光谱分析方法。对国家铅锌标准物质GBW07163进行分析, 各组分的相对标准偏差(RSD)为0.29%~7.1%;分析不参加回归的国家铅锌矿石标准物质GBW07165、GBW07173, 结果与认定值相符, 完全满足日常生产的需要。  相似文献   

16.
珊瑚礁样品中SiO2、Al2O3、Fe2O3、Na2O、K2O、MnO、TiO2和P2O5等低含量组分的测试通常需要采用不同的方法和仪器,难以满足批量样品测试的需求。实验以Li2B4O7-LiBO2-LiF为熔剂,采用高温熔融制样,建立X射线荧光光谱法(XRF)测定珊瑚礁样品中SiO2、Al2O3、Fe2O3、MgO、CaO、Na2O、K2O、MnO、TiO2、P2O5、SO3、Sr、Zr、Ba和Cr含量的方法。对熔融制样条件进行了优化,其中脱模剂LiBr饱和溶液最佳用量为150 μL。选取岩石、碳酸盐岩石、水系沉积物国家标准物质以及在标准物质中加入Sr标准溶液的方式建立校准样品系列,Sr和Zr采用经验系数法和康普顿散射线内标法校正基体效应,其他组分采用理论α系数校正基体效应,有效克服了基体效应的影响。结果表明,各组分测定值的相对标准偏差(RSD,n=7)为0.25%~19.5%。方法用于珊瑚礁实际样品分析,其分析结果与采用化学湿法的测定结果吻合,各组分的相对误差绝对值为0~28.86%。  相似文献   

17.
介绍了X射线荧光光谱法测定铝电解槽用干式防渗料中主次量成分(三氧化二铝、二氧化硅、三氧化二铁、二氧化钛、氧化钾、氧化钠、氧化钙、氧化镁)的方法。根据干式防渗料中主次成分的含量范围, 采用相似标样和高纯化学试剂配制校准样品建立校准曲线。试验表明, 以四硼酸锂与偏硼酸锂混合熔剂〔m(Li2B4O7)∶m(LiBO2)=12∶22〕熔融制样, 控制熔剂和试样比为10∶1, 在1 100 ℃温度下熔样, 以1滴溴化锂饱和溶液作脱模剂, 制备的样片测量效果较好。采用理论α系数或基本参数法校正元素间的吸收-增强效应。对拟定方法的精密度进行考察, 主量组分11次测定的相对标准偏差小于0.50%, 次量组分11次测定的相对标准偏差均小于5.0%。对干式防渗料实际样品和粘土标准样品进行准确度验证, 测量值与化学值或标准样品的认定值基本一致。  相似文献   

18.
王川 《冶金分析》2020,40(6):49-55
深海沉积物中含有多种矿产资源,准确测定深海沉积物主次组分,对深海沉积物中矿产资源的开发利用有重要意义。实验采用熔融制样-X射线荧光光谱法(XRF)准确测定了深海沉积物样品中Na2O、MgO、Al2O3、SiO2、P2O5、SO3、Cl、K2O、CaO、TiO2、MnO、Fe2O3、Ba、Cu、Ni、Sr、V、Y、Zn和Zr等20种主次组分。由于深海沉积物样品中SO3和Cl含量(0.10%~3.00%)较高及微量元素Cu、Ni、Sr、V、Y、Zn和Zr一般在5~600μg/g之间,为了准确测定这些组分,对熔融制样条件进行了详细探讨。由于SO3及Cl在熔融时易挥发损失,实验分别在600℃和700℃进行两次预氧化,有效防止了SO3及Cl在熔融时挥发损失。经试验,熔融温度选为1100℃,样品和混合熔剂(m(Li2B4O7)∶m(LiBO2)=67∶33)的质量分别是0.7000g和7.000g,熔片质量较好。为了使制备的各元素校准曲线既有一定的含量范围,又有适当含量梯度,除选用深海沉积物标准样品GBW07313~GBW07316外,还选用海洋沉积物标准样品GBW07333~GBW07336,并将它们按1∶1质量比混合制备校准样品,同时还用深海沉积物标样GBW07316与硫酸钠、氯化钠高纯试剂按一定的比例混合,制备成SO3质量分数为1.00%和Cl质量分数为5.00%合成校准样品。用经验系数法校正谱线重叠效应,理论α系数校正基体效应。在选定的实验条件下,利用GBW07316标准样品制备12个熔片进行精密度考察,各组分测定结果的相对标准偏差(RSD)在0.10%~4.6%;采用实验方法分别对标样及实际样品进行测定,主次组分的测定结果与标样的认定值及实际样品的电感耦合等离子体原子发射光谱法(ICP-AES)结果基本一致。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号