首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
高架轨道交通列车对周围环境振动影响的试验研究   总被引:6,自引:3,他引:3  
对北京地铁5号线高架桥上的运行列车引起周围地面振动的影响进行了实测,将测试得到的地面振动加速度数据在时域和频域内进行了分析。得到了以下结论:普通轨枕下的地面横向振级为58-100dB,竖向振级为55-91dB;梯形轨枕下的地面横向振级为62-85dB,竖向振级为60-83dB;地面横向振动随距离的衰减规律表现为先增大后减小,最大值出现在15m处的测点,衰减呈现出一定的波动性;竖向振动的衰减规律总的趋势是随着距离的增大而逐渐减小,但有一个明显的反弹区(本试验中为距离振源15m左右的范围处),且振动越大反弹越明显;梯形轨枕能够对一定频率范围内的振动起到减振效果,但是对另一频率范围的振动反而起到了放大作用,其原因是由于振动频率与梯形轨枕的自振频率产生共振而引起的;高频振动的衰减速度大于低频振动的衰减速度,远振源点的振动主要是由低频的振动引起的。  相似文献   

2.
运行列车引起的周围地面振动规律研究   总被引:5,自引:0,他引:5  
在京广铁路线附近进行了现场试验,测试分析了速度在21km/h―128km/h范围内运行列车引起的地面振动。结果表明:运行列车引起的地面振动的频率集中在10Hz―100Hz,车速对地面水平向振动的频率有一定影响;地面振动随至振源距离的增大呈波动性衰减;货物列车引起的地面加速度振级在各个方向上均明显大于旅客列车,其差值一般在10dB左右;列车引起的地面竖向振动大于两个方向的水平向振动,竖向振级为60dB―110dB;垂直线路的水平向振级为50dB―95dB;平行线路的水平向振级为55dB―80dB;线路附近的地面振动超过了我国关于环境振动规范的规定,说明运行列车引起的环境振动问题应当引起重视。  相似文献   

3.
地面振动是高速铁路运营期的主要环境问题之一,为了研究高速铁路高架桥段地面振动的传播和衰减规律,选择成渝高速铁路某桥梁段进行了现场地面三向振动测试。在时域和频域内分析了地面三向振动的时程特征和频谱特征,以及垂向振动、水平向振动随距离的传播特性。结果表明,在同一距离处,横向、纵向振动加速度幅值及有效值均大于垂向;三向振动随距离的增加,加速度幅值及有效值均呈衰减趋势;垂向和纵向振动中,高频成分衰减迅速,低频衰减速度较缓,而横向则是低频和高频均衰减迅速,但远场仍是以低频为主;三向振动远场优势频率均在10Hz左右;计权垂向振级高于水平向振级,未计权的水平向振级均大于垂向振级。  相似文献   

4.
地面振动是高速铁路运营期的主要环境问题之一,为了研究高速铁路高架桥段地面振动的传播和衰减规律,选择成渝高速铁路某桥梁段进行了现场地面三向振动测试。在时域和频域内分析了地面三向振动的时程特征和频谱特征,以及垂向振动、水平向振动随距离的传播特性。结果表明,在同一距离处,横向、纵向振动加速度幅值及有效值均大于垂向;三向振动随距离的增加,加速度幅值及有效值均呈衰减趋势;垂向和纵向振动中,高频成分衰减迅速,低频衰减速度较缓,而横向则是低频和高频均衰减迅速,但远场仍是以低频为主;三向振动远场优势频率均在10Hz左右;计权垂向振级高于水平向振级,未计权的水平向振级均大于垂向振级。  相似文献   

5.
为研究高速铁路路堤段地面振动的传播和衰减规律,选择成渝高速铁路某路堤段进行现场地面三向振动测试。在时域和频域内分析地面三向振动的时程特征和频谱特征,以及垂向振动、水平向振动随距离的传播特性。结果表明,在距离线路纵向中心线同一距离处,横向(Y)、纵向(X)振动加速度最大值及有效值均大于垂向(Z),随距离的增加,加速度最大值及有效值均呈衰减趋势;随着距离的增大,三向振动的频率带宽均越来越窄,远场垂向和纵向振动主频均基本集中在33.6 Hz左右,横向优势频率集中在9.6 Hz。计权后的垂向振级高于水平向振级,未计权的水平向振级均大于垂向振级,未计权三向加速度级和计权三向振级随距离的传播近似符合负指数规律。  相似文献   

6.
实测广州地铁3号线厦滘车辆段咽喉区直、曲线段列车运行引起的周围地面振动影响,分析列车引起地面振动加速度在时、频域内的传播规律。结果表明,咽喉区直线段在轨道35 m范围内,地面竖向振动加速度级为72~95d B,略大于水平振动加速度级62~95 d B;咽喉区曲线段在轨道25 m范围内,地面竖向振动加速度级为70~98 d B,略小于水平振动加速度级80~98 d B;对地铁车辆段咽喉区临近的环境振动评价时,应同时考虑水平、竖向振动影响;中高频振动随距离增加衰减速度较低频快,咽喉区列车运行引发的振动传递到临近建筑物时主要频率成分为4~60 Hz。建议在车辆段减振措施设计时应重点考虑中低频振动的减振方案;在路基外侧沿轨道方向结合排水设施设置明沟利于减弱车辆段列车运行引发的振动传播。  相似文献   

7.
基于基坑三向振动速度现场测试,通过数据处理与1/3倍频分析,研究了不同距离测点的爆破振动频率特性,段药量和不同起爆网路对爆破振动频率的影响,各向振动加速度振级随距离的变化规律。结果表明,爆破地震的频率主要集中在15Hz80Hz范围内;段药量越小,主振频率越高,主频域处于较高的频率范围,高频所占的能量比例较大;地表延时分区起爆与V型起爆相比,其质点振动加速度峰值较小,主频有明显提高,并且出现多峰;爆破引起的地面垂直方向振级大于两个水平方向振级,Z向振级为50dB80Hz范围内;段药量越小,主振频率越高,主频域处于较高的频率范围,高频所占的能量比例较大;地表延时分区起爆与V型起爆相比,其质点振动加速度峰值较小,主频有明显提高,并且出现多峰;爆破引起的地面垂直方向振级大于两个水平方向振级,Z向振级为50dB115dB,X向振级为45dB115dB,X向振级为45dB110dB,Y向振级为40dB110dB,Y向振级为40dB105dB,随着测点至爆源距离的增大,不同方向的振级均呈现衰减趋势,同时又表现出一定的波动性,50m以内时,振级衰减较快,50m以外,振级衰减较慢。  相似文献   

8.
为研究路基段列车引起环境振动传递特性以及列车编组、速度、轴重等因素对振动的影响,对昌九城际铁路线路基段进行大地振动现场测试。从时域、频域等多方面分析五种列车在不同速度下运行引起的三向大地振动。结果表明:近场大地振动能量集中在10 Hz~200 Hz,远场在10 Hz~80 Hz,近场处X、Y、Z方向主频分别为38.7 Hz、51.9 Hz、64.4 Hz,远场处主频均为25.9 Hz;随着距离的增加,X与Z方向在各频段的振动衰减量相似,Y方向在各频段的衰减量大于X与Z方向;地面竖向Z振级与列车速度近似呈线性关系,在30 m处Z振级增大速率为0.0714dB/(km/h);列车速度变化对50~100 Hz的高频振动影响较大,速度由36增大至119 km/h时,16、50、100 Hz处Z方向分别增加了9.56、17.13、14.87 dB;列车编组对地面振动响应影响较小,当运行速度为115 km/h时,CRH2A动车组列车的不同编组(8节或16节)下引起的地面振动响应几乎完全相同;列车轴重是影响地面振动响应大小的重要因素,且轴重越大引起的振动响应越大。  相似文献   

9.
为研究CRTS III型板式无砟轨道环境振动特点,对成灌铁路某桥梁段地面振动进行现场测试,分析不同测点地面振动加速度时程特点、频谱特征,并进行1/3倍频程分析和Z振级的衰减分析。结果表明,列车以180 km/h速度通过时,地面振动持续时间约6 s,距线路中心10 m处振动峰值加速度为60 mm/s2;在10 m处振动频谱分布范围在20~90 Hz,高频振动随距离衰减更快,大于20 m处振动主要以15~45 Hz为主;地面振动Z振级的衰减符合对数衰减规律。  相似文献   

10.
针对列车在250~385 km/h高速运行时的轨道、桥梁和地面振动开展现场测试。分别采用连续小波变换、1/3倍频程分频振级和环境振动评价标准对测试数据进行分析,研究振动自轮轨接触处产生,在轨道、桥梁和土体中的传递特性。结果表明:各测点的振动响应均表现出冲击振动特性,地面振动的峰值频率受列车周期性轮轴激励频率和轮轨力峰值频率的影响;桥梁、地面振动响应受到相邻两节车的影响,故建模分析时可仅考虑少数几节车;箱梁、墩顶和地面的总体振动加速度级随车速的增加率分别为0.33、0.52和0.22 dB/(10 km/h);箱梁和墩顶振动的优势频段为31.5~125 Hz,地面振动的峰值频率为40~50 Hz;地面振动随距离的衰减规律符合3次多项式,在测试车速范围内,距离桥墩15 m之外的地面总体Z计权振动加速度级小于80 dB。  相似文献   

11.
利用实测结果分析了桥梁爆破拆除塌落引起的地面振动加速度特征,结论如下:桥梁塌落地面振动加速度峰值随距离增大而降低,竖向分量加速度峰值显著大于水平分量,随距离增大差别变小;测线1的地面振动加速度峰值频率随距离增加呈指数降低趋势,受叠加效应影响,测线2和测线3的地面振动加速度峰值频率随距离的变化规律不明显;测线1的切向振动分量的峰值频率最高,测线2次之,测线3最低;地面振动加速度持时随距离增加而变长,水平分量持时大于竖向分量;减振措施在降低爆破塌落振动峰值的同时也会降低地面振动峰值频率、延长其持时;多个桥联连续塌落产生的叠加效应使得地面振动加速度峰值增加、峰值频率降低,不利于建筑结构安全。  相似文献   

12.
为研究桥墩处的环境振动特性,采用现场实测的方法对成灌快速铁路桥墩处环境振动进行测试。分析桥墩处环境振动的时程曲线、频谱曲线数据,初步得出地面竖向环境振动特性,并采用回归分析方法,拟合出竖向振动的衰减公式。结果表明:随着距线路中心距离的增加,振动加速度逐渐减小,地面振动持续时间较短,约为6 s;环境振动在衰减过程中,近振源处的衰减速度大于远振源处的衰减速度;环境振动的能量主要集中在10 Hz~63 Hz之间;桥墩处的竖向环境振动最大值符合指数衰减规律。  相似文献   

13.
基于基坑三向振动速度现场测试,通过数据处理与1/3倍频分析,研究了不同距离测点的爆破振动频率特性,段药量和不同起爆网路对爆破振动频率的影响,各向振动加速度振级随距离的变化规律。结果表明,爆破地震的频率主要集中在15Hz~80Hz范围内;段药量越小,主振频率越高,主频域处于较高的频率范围,高频所占的能量比例较大;地表延时分区起爆与V型起爆相比,其质点振动加速度峰值较小,主频有明显提高,并且出现多峰;爆破引起的地面垂直方向振级大于两个水平方向振级,Z向振级为50dB~115dB,X向振级为45dB~110dB,Y向振级为40dB~105dB,随着测点至爆源距离的增大,不同方向的振级均呈现衰减趋势,同时又表现出一定的波动性,50m以内时,振级衰减较快,50m以外,振级衰减较慢。  相似文献   

14.
以某高架桥爆破拆除工程为例,总结了高架桥爆破拆除塌落引起的地面振动特征,通过与经验公式对比,分析了高架桥爆破拆除塌落触地振动速度衰减规律与经验公式之间的差异,主要结论如下:三条测线地面振动速度峰值中竖向分量最大,两个水平分量较小;测线2和测线3各测点的地面振动速度峰值比测线1略大,说明地面振动存在一定的叠加,并且测点距离高架桥越远叠加越明显;本次高架桥爆破拆除塌落触地振动的主振频率偏低;竖向分量的主振频率最高,径向和切向主振频率较低且相近;在测点距离较小时,地面振动速度实测值小于经验公式计算值,而距离较大时在相反,实测值与距离接近于线性关系;本次爆破拆除方案设计合理,周边建筑物安全。  相似文献   

15.
地面城轨交通近轨道区域自由地表振动实测研究   总被引:4,自引:0,他引:4       下载免费PDF全文
摘要:城市轨道交通诱发周边地表振动已成为突出的环境振动问题。为考查轨道周边自由地表垂向振动的特性及其传播规律,在北京城铁13号线回龙观至霍营区段进行了现场观测试验。从时域、功率谱和振动级三个方面对获得的数据进行了分析。结果显示:随着与轨道距离的增加,地表加速度峰值明显衰减,振动持时增加;振动优势频率为10-80Hz,近轨道处以高频为主,远离轨道处以低频为主;加权Z振级单调衰减,但分频段振级并非单调衰减,与场地卓越频率接近的频段存在较大的反弹现象;乘客满载和半载对Z振级的影响不大;相对于干线铁路而言,城轨交通地面振动水平较低。  相似文献   

16.
运行列车对周围建筑物振动影响的试验研究   总被引:3,自引:0,他引:3  
研究了运行列车对建筑物振动的影响规律。测试时,客车的速度范围为40~115km/h,货车为26~57km/h。测试结果表明:建筑物的振动总的趋势是随与振源距离的增大而减小,随列车车速的提高而增大;相同车速的货车比客车引起的速度振级大5~15dB;对6层建筑物,楼板振动沿层高呈增大趋势,顶层的竖向振级比底层大2~6dB,横向振级比底层大10~15dB;房间中央的楼板振动大于边角和楼梯楼面的振动;楼外地面的速度振级比楼内地面大2~10dB,其差值随振级的增大逐渐变小。列车对附近建筑物的振动影响比较严重,超出了有关标准的规定,应引起重视。  相似文献   

17.
车辆荷载引起地面振动的实测研究   总被引:2,自引:1,他引:1       下载免费PDF全文
对行驶重载卡车引起的地面振动进行现场实测,从加速度峰值、频谱和振级上分析了振动的衰减情况,并用两种方法讨论了扣除背景振动的振级,然后用基于最小二乘原理的模式搜索法拟合出了振动的衰减公式。研究表明:卡车引起的振动主要以垂向为主,随着振源距离的增大,振动逐渐衰减,而且振动在较近的距离内衰减很快,高频部分几乎可以完全衰减,而低频部分的振动随着距离振源的增大,衰减相对较缓,甚至在100米处还有其残余振动。  相似文献   

18.
为分析城市立交桥爆破拆除时结构构件塌落造成的地面振动的特征,介绍了某城市典型立交桥的爆破拆除中地面振动的测量方法,并基于观测点实测数据对地面振动的加速度峰值、频率和持时进行了分析。分析结果表明:塌落造成的竖向地振动幅值比水平分量大,但是其随着距离增大迅速衰减,因此在距离塌落处较近的区域应该考虑竖向地振动的影响;桥梁结构多次连续塌落会导致出现地面振动的叠加,采取减隔振措施可以降低加速度峰值,同时也会使得加速度的峰值频率降低、持时增加;爆破和塌落振动并未对保留桥梁结构造成损伤,说明爆破拆除是一种安全、高效的拆除方法。  相似文献   

19.
隧道内脉冲激励下地层振动传递特性研究   总被引:1,自引:0,他引:1       下载免费PDF全文
目前,对于地铁运营引起的振动在地层中的传递特性一直未有系统深入的研究。利用自动落锤激励装置锤击轨道减振与控制实验室10m埋深隧道内轨道,研究了0~200Hz频段振动加速度在地层中的传播衰减特性。试验结果表明:(1)隧道结构-地面振动加速度峰值衰减率达到81.25%,地层对振动有很强的衰减作用。(2) 除了30Hz附近频段传递函数幅值大于1,隧道结构到地面振动响应传递函数幅值普遍小于0.4。(3) 隧道结构-地面1/3倍频程加速度级传递损失曲线呈V形分布,传递损失在30Hz附近最小,且为负值,此频段振动加速度能量从隧道传递到地面有放大现象。  相似文献   

20.
以成灌快铁安德站为工程背景开展现场试验,实测了轨道梁、站台、候车大厅和办公室区域的振动加速度和声压,并对实测信号进行时域和频域分析。采用数值方法在频域内分析了轨道梁振动、桥墩动反力、站房振动和室内二次辐射噪声,并将计算结果与实测值进行对比。结果表明:当列车以速度190 km/h通过车站时,轨道梁振动的优势频段为40~80 Hz,竖向振动加速度峰值小于规范限值;办公室和候车大厅地面振动的优势频段为20~100 Hz,振级接近80 dB;站台处、办公室内和候车大厅内噪声的优势频段分别为300~2500 Hz、40~63 Hz和20~100 Hz,办公室内和候车大厅内的低频噪声远远超出身心舒适度限值;桥墩竖向动反力的优势频段为25~63 Hz,是引起办公室和候车大厅地面振动的主要原因;站房–土体耦合有限元模型和内部声辐射边界元模型可以较好地模拟站房振动及二次辐射噪声。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号