首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 15 毫秒
1.
在Gleeble-1500热模机上对2026铝合金进行了热压缩实验,研究该合金在变形温度为300~500℃、应变速率为0.01~10 S-1条件下热压缩变形流变应力行为.结果表明:流变应力开始随应变的增加而增大,出现峰值后逐渐减小并趋于平稳,表现出流变软化特征;应力峰值随温度的升高而减小,随应变速率的增大而增大;可用包含Zener-Hollomon参数的Arrhenius双曲正弦关系来描述2026铝合金热变形行为,其变形激活能为256.02KJ/mol.合金热压缩变形的主要软化机制由动态回复转化为连续动态再结晶.  相似文献   

2.
在Gleeble-1500热模拟机上对室温120°模具等径弯曲通道变形(ECAP)制备的平均晶粒尺寸为200nm的工业纯钛(CP-Ti)进行等温变速压缩实验,研究超细晶(UFG)工业纯钛在变形温度为298~673K和应变速率为10-3~100s-1条件下的流变行为。利用透射电子显微镜分析超细晶工业纯钛在不同变形条件下的组织演化规律。结果表明:流变应力在变形初期随应变的增加而增大,出现峰值后逐渐趋于平稳;峰值应力随温度的升高而减小,随应变速率的增大而增大;随变形温度的升高和应变速率的降低,应变速率敏感性指数m增加,晶粒粗化,亚晶尺寸增大,再结晶晶粒数量逐渐增加;超细晶工业纯钛热压缩变形的主要软化机制随变形温度的升高和应变速率的降低由动态回复逐步转变为动态再结晶。  相似文献   

3.
7150铝合金高温热压缩变形流变应力行为   总被引:7,自引:2,他引:5  
在Gleeble-1500热模拟机上对7150铝合金进行高温热压缩实验,研究该合金在变形温度为300~450 ℃和应变速率为0.01~10 s~(-1) 条件下的流变应力行为.结果表明:流变应力在变形初期随着应变的增加而增大,出现峰值后逐渐趋于平稳;峰值应力随着温度的升高而减小,随着应变速率的增大而增大;可用包含Zener-Hollomon参数的Arrhenius双曲正弦关系来描述合金的热流变行为,其变形激活能为226.698 8 kJ/mol;随着温度的升高和应变速率的降低,合金中拉长的晶粒发生粗化,亚晶尺寸增大,再结晶晶粒在晶界交叉处出现并且晶粒数量逐渐增加;合金热压缩变形的主要软化机制由动态回复逐步转变为动态再结晶.  相似文献   

4.
在Gleeble-1500热模拟机上进行高温等温压缩试验,研究了Al-Cu-Mg-Ag合金在变形温度为300~500 ℃、应变速率为0.01~10.00 s-1条件下的流变变形行为,建立了Al-Cu-Mg-Ag合金热变形本构方程.结果表明,流变应力随温度的降低、应变速率的提高而增大,在应变速率小于10.00 s-1的条件下,流变应力随应变增加而迅速增大,达到峰值后趋于平稳,表现出动态回复的特征;在应变速率为10.00 s-1,温度大于300 ℃的条件下,应力达到峰值后逐渐下降,并出现锯齿波动现象,表明合金发生了局部动态再结晶;Al-Cu-Mg-Ag合金高温变形时的流变行为可用Zener-Hollomon参数来描述,其变形激活能为160.08 kJ/mol.  相似文献   

5.
2519铝合金热变形流变行为   总被引:23,自引:11,他引:23  
采用Gleeble-1500热模拟机进行高温等温压缩实验,研究了2519铝合金在变形温度为300~450℃、应变速率为0.01~10 s-1条件下的流变变形行为.结果表明:应变速率和变形温度对合金流变应力的大小有显著影响,流变应力随温度升高而降低,随应变速率的提高而增大,在应变速率ε<10 s-1条件下,流变应力开始随应变增加而增大,达到峰值后趋于平稳,表现出动态回复的特征;而在ε=10 s-1,t≥350℃的变形条件下,合金发生了局部动态再结晶.可用包含Arrhenius项的Zener-Hollomon参数描述2519铝合金高温塑性变形时的流变行为.  相似文献   

6.
为了考察6063铝合金在较高应变速率下的变形行为,采用Gleeble-3500热模拟试验机对合金在变形温度390~510℃和应变速率1~20 s~(-1)进行热压缩试验。结果表明:流动应力随着变形温度的升高而降低,随着应变速率的增大而升高。在应变速率为1~10 s~(-1)时,流动应力随着应变增加逐渐进入稳态流动阶段;在应变速率为20 s~(-1)时,流动应力达到峰值后随应变量增加而下降。通过热加工图获得适宜的热变形工艺参数为:变形温度460~490℃,应变速率2~6.3 s~(-1)。合金在失稳区发生局部流动和剪切变形,在安全加工区域组织更均匀。随着温度升高和应变速率下降,位错密度减小,合金发生动态再结晶。  相似文献   

7.
在Gleeble-1500D热模拟试验机上,采用高温等温压缩试验,对Cu-2.0Ni-0.5Si-0.4Cr合金在应变速率为0.01~5s-1、变形温度为600~800℃、最大变形程度为60%条件下的流变应力行为进行了研究。结果表明:随变形温度升高,合金的流变应力下降,随应变速率提高,流变应力增大;在应变温度为700,800℃时,合金热压缩变形流变应力出现了明显的峰值应力,表现为连续动态再结晶特征;从流变应力、应变速率和温度的相关性,得出了该合金高温热压缩变形时的应力指数(n)、应力参数(α)、结构因子(A)、热变形激活能(Q)和流变应力方程;合金动态再结晶的显微组织强烈受到变形温度的影响。  相似文献   

8.
Ti8LC合金热变形及其微观组织   总被引:1,自引:0,他引:1  
采用GLEEBLE-1500热模拟机对Ti8LC合金在温度为850~1000 ℃、变形速率为0.001~0.1 s-1、最大变形程度为60%的条件下,进行恒应变速率高温压缩模拟试验研究,分析合金高温变形时流变应力与应变速率及变形温度之间的关系以及组织变化.结果表明:Ti8LC合金流变应力随应变速率的增大而增大,在恒应变速率条件下,真应力水平随温度的升高而降低;在给定的变形条件下,通过回归计算,建立了一种Ti8LC合金的本构方程;根据试验分析,在850~950 ℃温度时变形,主要发生动态再结晶,随着温度的升高,软化机制主要是动态回复.  相似文献   

9.
针对亚稳β-T51Z(51.1Zr-40.2Ti-4.5Al-4.2V)合金,采用Gleeble-3500试验机进行热模拟实验,利用EBSD和TEM分析了变形温度和应变速率对合金热变形行为的影响及其组织演变规律。结果表明:T51Z合金在热变形时,其流变应力曲线呈现典型的单峰动态再结晶特征,其应力增幅随着变形温度的降低或应变速率的增加逐渐增加。基于峰值应力建立了合金热变形本构方程,计算得出热变形激活能为159.57kJ/mol,该合金在热压缩过程中的变形机制主要与位错的交滑移有关。变形温度和应变速率对合金形变组织影响较大,整个热变形过程都存在动态回复,随着变形温度的升高或应变速率的降低,合金动态再结晶分数逐渐增大。在800℃/10 s~(-1)变形条件下,合金容易形成绝热剪切带,宏/微观变形不均匀现象严重。  相似文献   

10.
在变形温度700~860 ℃、应变速率0.001~1 s-1下,对TB6合金进行热压缩变形,以研究TB6合金的热压缩流变应力行为.研究温度、变形量、应变速率等因素对TB6热变形流变应力的影响,建立了TB6合金热变形流变应力的本构模型方程.结果表明:合金在热压缩过程中,流变应力随着应变的增大而增加,达到峰值应力后逐渐趋于平稳;应力峰值随着应变速率的增大而增大,随着温度的升高而呈减小趋势.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号