首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 139 毫秒
1.
为了准确把握钢桥面顶板-纵肋焊缝位置的真实拉、压状态和应力比对正交异性钢桥面板(OSD)疲劳寿命的影响,通过建立焊接残余应力与车载应力的耦合应力分析模型,构建焊接残余应力和车辆荷载耦合作用下的应力比、等效应力幅等疲劳参数计算方法,形成了焊接残余应力与车载应力的耦合应力精细化计算方法. 以江阴长江大桥为例,应用该方法,开展车辆荷载和残余应力场对疲劳损伤的定量分析. 案例分析表明,焊缝位置残余拉应力在叠加了以拉应力为主的循环车载应力后,纵、横向应力松弛大小均超过车载应力峰值,出现明显的应力松弛现象,而叠加以压应力为主的循环车载应力后,应力松弛效应不明显;与仅考虑车载应力作用下的焊缝位置应力状态相比,考虑焊接残余应力和车载应力耦合作用之后,压应力循环工况焊缝位置疲劳应力状态发生了本质变化,即由不需要进行疲劳验算的压应力状态变为拉应力状态;拉应力循环工况的疲劳状态虽未改变,但该状态下焊缝位置的疲劳寿命由无限变为有限.  相似文献   

2.
为评估钢-UHPC(超高性能混凝土,Ultra-High Performance Concrete)组合桥面对大跨度钢箱梁斜拉桥的加固效果,基于随机车流下应力监测数据,结合《公路钢结构桥梁设计规范》(JTG D64-2015)对钢-UHPC组合桥面和ERE(冷拌环氧树脂,Epoxy bond chips layer+ Resin asphalt+ Epoxy bond chips layer)桥面的疲劳性能进行了对比评估。利用Miner线性累积损伤准则计算了两种桥面各疲劳易损细节的剩余疲劳寿命。建立有限元模型,对钢-UHPC组合桥面UHPC层的抗裂性能进行了验算;计算了两种桥面钢桥面板的最大挠度及沥青铺装层的最大拉应力。结果表明: ERE桥面面板-纵肋焊缝纵肋侧、横隔板弧形切口和纵肋对接焊缝处存在较大应力,剩余疲劳寿命分别为214、186、61年;ERE桥面纵肋对接焊缝处在桥梁设计基准期内有疲劳破坏的风险;经钢-UHPC组合桥面加固后,正交异性板各疲劳易损细节最大应力幅值均降低到常幅疲劳极限以下,剩余疲劳寿命增长为无穷大;钢-UHPC组合桥面UHPC层的最大拉应力为4.68MPa,抗裂性能满足规范设计要求;经钢-UHPC组合桥面加固后,正交异性桥面刚度提升效果明显;加固后,钢桥面板挠度降幅为34%,最大挠度为0.69mm;沥青铺装层最大拉应力降幅为59%,最大拉应力为0.42MPa。经钢-UHPC组合桥面加固后,正交异性钢桥面板各疲劳易损细节疲劳性能满足规范设计要求,桥面铺装层的抗裂性能也有所改善。  相似文献   

3.
以重庆市几江长江大桥为例,对公轨两用悬索桥风-车-桥耦合振动进行了研究。首先,应用弹性系统总势能不变的原理与"对号入座"的矩阵形成方法,分别建立了车辆、悬索桥与车-桥系统耦合振动的动力学方程。然后,对大桥桥址处的风速场进行了数值仿真,并利用风洞的数值模拟技术获得了列车、大桥主梁及列车-桥梁系统的三分力系数。在此基础上,计算和分析了几江长江大桥的风-车-桥耦合系统的振动响应。研究表明,当桥址处风速不大于25m/s时,列车的安全性和舒适性均满足我国列车在强风下运行管制的规程和标准,也说明了在该桥梁的设计中强风不会成为控制性的指标。  相似文献   

4.
正交异性钢桥面板在大跨度钢桥建设中应用的越来越广泛。在实际荷载作用下,正交异性钢桥面铺装内的最大应力应变的位置和大小,是钢桥面铺装材料和结构设计的重要基础。文章围绕正交异性钢桥面板钢桥面铺装早期损坏严重问题,利用有限元方法建立了简支梁桥的整体模型,施加移动荷载确定桥面铺装层最不利受力位置,对简支梁桥的桥面铺装层最不利受力情况进行研究。结果表明:当车辆荷载后轴作用于近跨中21. 4 m处和桥面铺装内纵向22. 6 m处时,产生的纵向应力值最大;铺装层内横向最大拉应力发生在跨中附近腹板处桥面铺装层顶面,竖向最大拉应变位于横桥向3. 5 m,纵桥向最大压应力和压应变位于横桥向3. 8 m处,且铺装层各层的横、纵桥向最大应力均从顶层向下减小,而竖向最大拉应力从顶层向下则依次增大。  相似文献   

5.
钢箱梁悬索桥大节段正交异性钢桥面板疲劳性能试验   总被引:1,自引:0,他引:1  
针对正交异性钢桥面板的焊接细节在反复荷载作用下易疲劳开裂的问题,以三峡库区某大跨悬索桥的钢箱梁正交异性钢桥面板为工程背景,进行1∶2缩尺的钢桥面板疲劳性能试验研究,进行设计寿命期内的疲劳试验和极限寿命期内的疲劳试验.疲劳试验结果表明:200万次的循环加载后,模型上各测点的应力值波动很小,在加/卸载过程中位移具有良好的对称性、可恢复性与重复性,说明模型的应力状态稳定,没有出现因局部开裂、损伤而导致模型应力显著变化的现象,说明该桥的正交异性钢桥面板的构造满足设计要求,且有一定的安全储备.  相似文献   

6.
为了给大跨径钢-混组合梁斜拉桥抗疲劳设计提供依据,针对珠海某水道主航道桥,开展了多车道荷载下钢-混组合梁斜拉桥疲劳性能分析。首先建立全桥有限元模型,通过慢车道标准疲劳车移动荷载分析,获得最不利钢主梁、混凝土桥面板和斜拉索的具体位置。然后基于英国BS5400规范和Miner准则,考虑各车道的影响,获得了最不利钢主梁和斜拉索200万次等效疲劳应力幅以及混凝土桥面板的损伤度。结果表明:中跨455m处钢主梁和边跨ES3#斜拉索为疲劳关键部位,其运营期内200万次等效应力幅分别为61.03MPa和50.16MPa,均小于200万次疲劳破坏应力幅;塔梁结合处混凝土桥面板的疲劳损伤度为5.27×10-8,远小于1,均满足设计要求。研究成果对大跨径钢-混组合梁抗疲劳设计具有直接的指导作用。  相似文献   

7.
大跨度斜拉桥正交异性钢桥面板的顶板与纵肋焊接构造细节在车辆荷载作用下易产生疲劳损伤进而导致服役性能降低、影响行车安全。为评估大跨度桥梁钢桥面板的疲劳性能,提出基于细观损伤力学的大跨度钢桥疲劳损伤跨尺度评估方法;推导了基于细观损伤力学的钢桥面板疲劳损伤演化模型,在此基础上,结合实测交通数据,实现了基于Monte-Carlo法的随机车流模拟;最后,将提出的方法应用于一座大跨度三塔斜拉桥。研究结果表明,大跨度斜拉桥钢桥面板体系焊缝周围区域的累积疲劳损伤程度明显高于桥面板体系的其他部位;顶板与纵肋焊接构造细节的疲劳损伤累积呈现明显的非线性,预测的疲劳寿命远小于Miner线性疲劳损伤累积准则的结果。  相似文献   

8.
介绍正交异性钢桥面板的发展历史和正交异性钢桥面板疲劳问题的产生原因和分析方法,以及国内外研究现状.阐述疲劳分析的基本概念和理论,分析疲劳裂纹的成因以及研究方法.总结美国的AASHTO规范、英国的BS5400规范、欧洲的Eurocode规范和日本规范中关于疲劳荷载谱的研究成果.在对国内外研究成果加以整理的基础上,建立了一个符合我国实际情况的疲劳车模型.  相似文献   

9.
正交异性钢桥沥青混凝土桥面铺装的力学分析   总被引:3,自引:0,他引:3  
给出了钢桥面铺装体系有限元计算的基本原理及假设,根据国内大跨径钢桥常用的钢箱梁正交异性桥面板及铺装结构参数,分析了桥面铺装层在行车荷载作用下的受力特性及其与铺装层材料弹性模量的关系,得出最不利荷位,确定了最危险点,并以此处的最大破坏应力作为钢桥面铺装结构设计控制指标,从而控制桥面铺装层的早期破坏.  相似文献   

10.
带裂缝桥面铺装内部动水行为仿真模拟   总被引:1,自引:1,他引:0  
为了解带裂缝桥面铺装在内部动水压力作用下的力学响应情况,采用LS-DYNA有限元分析软件,建立沥青铺装层内部饱水裂缝模型,施加车辆正弦动态荷载,对内部动水行为进行流固耦合仿真模拟分析.结果表明:车辆动载作用下,饱水微裂缝所受最大压、剪应力均位于裂缝尖端,而最大拉应力则位于裂缝周围;饱水裂缝尖端最大压、剪应力与车速和荷载水平都有很好的线性相关性,在120 km/h速度、1.5 MPa荷载水平下,X、Y向最大压应力和最大剪应力分别达到0.472、1.101、0.361 MPa,在如此大应力反复作用下微裂缝将迅速扩展,加速铺装结构破坏.导致沥青铺装层内饱水微裂缝扩展、恶化的最主要因素是车辆的超载,交通管理部门应严格限制超载超限车辆的上路.  相似文献   

11.
结合郑州市陇海路主线高架桥工程,针对波形钢腹板PC组合箱梁桥面沥青铺装结构,利用ANSYS软件建立三维有限元计算模型,对铺装层厚度、铺装层弹性模量、车辆荷载、汽车冲击力等影响桥面铺装受力的因素进行敏感性分析,同时分析温度效应对铺装结构的影响。研究结果表明:车辆荷载对铺装层受力影响显著,且各应力与轴载大小基本成线性关系; 铺装层厚度与弹性模量对铺装层受力有一定影响; 汽车冲击力对铺装层受力影响较大; 温度变化会使铺装结构产生较大的温度应力。  相似文献   

12.
万州长江大桥车桥耦合振动的研究   总被引:6,自引:0,他引:6  
结合万州长江大桥铁路桥梁的特点.分别建立了车辆的三维离散自由度模型和桥梁的模态模型.通过轮轨作用关系建立了车桥耦合振动的动力模型.并对万州长江大桥的车桥耦合振动进行了研究.分析表明:主梁较柔的大跨度钢桁架桥梁,车辆高速行驶对其动力响应特别是横向动力响应影响显著.  相似文献   

13.
芜湖长江大桥   总被引:8,自引:0,他引:8  
芜湖长江大桥,是一座公路、铁路两用桥,在极其恶劣的环境条件下,采用了跨径为(180 312 180)m的斜拉桥,其特点为塔矮,塔高与中跨跨径之比为0.11,边跨跨径大,边跨与中跨的比值0.577,铁路荷载很大,动力作用大,提高梁的刚度,采取了三点措施,以满足铁路运行的需要.  相似文献   

14.
新型钢桥面铺装结构的力学性能分析   总被引:2,自引:0,他引:2  
针对目前正交异性钢桥面铺装层常见的裂缝、推移、局部拥包等破坏形式,应用有限元法对新型桥面铺装结构,分析不同位置的荷载对铺装层最大拉应力和表面最大竖向位移、最大剪应力的影响,并与传统的沥青混凝土铺装结构进行对比分析。分析结果表明:采用新型的铺装结构比沥青混凝土铺装结构的最大拉应力、表面最大竖向位移、铺装层表面和底面的最大剪应力都有一定程度的降低,因此能较好的控制钢桥面铺装层的破坏。在采用新型桥面铺装结构时应以铺装层横向最大拉应力、最大横向剪应力作为铺装层开裂破坏控制指标。研究结果可以为大跨径钢箱梁桥面铺装设计提供理论参考.  相似文献   

15.
重庆朝天门大桥是当今世界第一大跨度拱桥,其下弦节点直接承受公路荷载与轻轨荷载的双重作用,下弦节点连接处应力幅大,目前大跨度钢桥中未曾有类似的设计及试验,因此,该文对其下弦节点连接进行了高周疲劳试验以确定其连接的可靠性。首先通过相关规范及朝天门大桥的交通量确定出模型的试验荷载,并完成从实桥节点到模型的转换,然后对模型进行正常设计荷载下的200万次疲劳试验,该试验验证了设计寿命期内朝天门大桥节点连接的安全性,并用空间有限元分析结果验证了试验数据的真实性。最后进行了该模型的疲劳破坏试验,得出了这类节点的疲劳破坏规律,为该类桥梁以后的设计及监测提供了数据及参考意见。  相似文献   

16.
现有方法将加载控制弯矩简单视为未施工前作用裸梁上的恒载(主要为桥面铺装)和设计车辆荷载之和,未考虑桥面铺装的承载能力,致使试验结果不准确。提出了一种基于应变确定裸梁静载试验加载控制弯矩的新方法。基于成桥状态下设计车辆荷载及桥面铺装联合作用下的最大应变,根据其最大应变值通过裸梁截面惯性矩反向计算确定控制弯矩。该方法充分考虑了裸梁至成桥施工及受力过程,在桥梁施工过程中桥面铺装的恒载完全由裸梁承担,成桥后营运过程中部分桥面铺装与梁体协调工作、形成受力整体,共同承担设计车辆荷载。通过工程实例验证,本方法可实现裸梁静载试验控制弯矩的精准化、试验控制的精细化。  相似文献   

17.
为了分析桥面铺装层的力学特性及其影响因素,结合桥面铺装的结构形式建立了有限元模型,分析了不同水平制动力系数、铺装上下面层材料模量组合及铺装层厚度变化对铺装层内力学状态的影响规律.结果表明,不同的水平载荷对铺装层内的主应力影响较小,而对铺装层内的剪应力影响较大;随着水平载荷的增加,铺装层及防水粘接层内的最大剪应力呈线性增大的趋势;随着铺装层组合模量的提高,铺装层内的主应力变化较小,而层间剪应力相应减小,但变化的幅度较小;增加铺装层的厚度对主应力的影响很小,随着厚度的增加层间最大剪应力减小.研究结果可为桥面铺装材料的选择和结构设计提供理论参考.  相似文献   

18.
在分析江阴大桥钢桥面铺装破坏特征的基础上,结合环氧沥青混凝土试验段的实际使用状况,故决定采用环氧沥青混凝土对铺装层进行预防性维修以避免其继续恶化.进而详细介绍了环氧沥青混凝土铺装方案及实施过程,并给出了此次预防性维修材料的性能指标.相关的资料可以为我国的钢桥面铺装维修技术提供参考.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号