首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 14 毫秒
1.
A positive surface discharge on a solid insulator in air consists of many branched streamers. The length of the streamers is controlled by the applied voltage at the instant when the streamers occur. The relationship between the inception voltage and the streamer length depends on the thickness of the solid insulator and the number of streamer branches. At a low voltage, the length of a streamer decreases with increasing the thickness of the insulator, but at a high voltage, it increases with thickness. The length of a streamer with a large number of branches is shorter than that with a few branches. This phenomenon can be explained as follows: the electrons generated in each branch flow into a positive high-potential electrode through the stem of the streamer, and the potential drop in the stem is enhanced due to this electron flow  相似文献   

2.
By measuring the currents associated with the streamer discharge along silicone rubber surfaces, parameters of streamer propagation such as the minimum field of streamer crossing, the field of stable streamer propagation, the mean velocity and the streamer charge distribution have been analyzed and compared to the streamer discharge in air alone. Clear differences were observed in the measured currents for the individual surfaces at low background fields (285 kV/m). For higher fields the streamer crosses the gap almost independently of the surface type. The minimum streamer field was found to be slightly increased compared to air. The field of stable streamer propagation also was higher than in air. It is ~ 570 kV/m, larger than that of the streamer discharge in air (~ 500), under the same conditions. The streamer speed was found slightly increased in the presence of the silicone rubber surface and the distinction between the individual surfaces was modest. A discussion on possible mechanisms for the observed differences in the streamer speed and currents with and without the insulator surfaces is presented. The net positive charge of the streamer along an insulating surface seems to be distributed along the streamer channel rather than localized in the front part of the channel as the case for the streamer in air  相似文献   

3.
In a uniform field arrangement, under direct voltage, positive streamer propagation and breakdown are investigated along cylindrical insulators with different profiles, inserted perpendicularly between two parallel plane electrodes. The basic properties of streamer propagation and breakdown, namely the electric field required for a stable propagation together with the associated velocity and the breakdown field together with time to breakdown, are measured as influenced by the pulse voltage amplitude used for the streamer initiation and by the insulator profile. It is shown that a strong relation between streamer propagation and breakdown exists, because the insulator profile exerts a similar influence on the breakdown and propagation fields. The effect of a shed on an insulating surface, forming an `obstruction' to streamer progress, is to increase the stability for propagation and breakdown fields, and to reduce the propagation velocity at all applied fields compared with those in the case of a smooth insulator. Along the surface of a smooth insulator, a streamer system propagates with a `surface' and an `air' component; however, a shed on an insulating surface modifies this system, resulting in only one component reaching the cathode  相似文献   

4.
为了研究沙尘沉积对复合绝缘子串沿面电位与电场的影响,基于有限元法,建立了110 kV 工作电压下的复合绝缘子串的清洁与覆沙模型,分析了复合绝缘子表面在沉积沙尘不同的情况下, 其沿面电位与电场分布的变化规律。研究结果表明:复合绝缘子沿面电位与电场分布受绝缘子表面几何形状影响,当绝缘子沿面覆盖沙层时,对其沿面电位影响非常小,但是其沿面电场在覆沙处会下降,并且越靠近高低压两侧下降幅度越大,且下降幅度与沙层厚度无关。沙层中出现的无沙带会增大此处绝缘子沿面的电场强度,越靠近高低压两侧的绝缘子,增大幅度越大,且增大幅度与无沙带的宽度和沙层厚度都相关。  相似文献   

5.
Experimental results on the propagation of positive streamers along contoured, axially symmetric, polytetrafluoroethylene (PTFE) insulation surfaces are presented. A plane parallel electrode configuration provides a substantially uniform electric field for streamer propagation and a point electrode at the ground plane initiates the avalanche process. Basic streamer properties of velocity and propagation probability with field strength are measured and compared with the corresponding characteristics of air and cylindrical insulators. Several insulator profiles are investigated and the occurrence of multiple streamer paths is demonstrated, which are generally distinguishable as surface and air components with different propagation velocities. Comparative data of the breakdown fields for the various insulators is included  相似文献   

6.
A measuring technique with a multilayer insulator is proposed to enable charge distribution measurement on an insulator of high potential. By using this technique, the residual charge distribution of the positive surface discharge was successfully measured with an electrostatic probe; nevertheless its potential is 10 times higher than the measurable range of an electrostatic probe. © 2012 Institute of Electrical Engineers of Japan. Published by John Wiley & Sons, Inc.  相似文献   

7.
The charge density produced by streamers on an insulator surface in SF6 has been investigated by using a probe method with a high-speed temporal resolution. Concentric circular probes, which also act as a plane electrode, are used in this probe method. Probe signals are observed oscilloscopically and converted into the charge densities through a numerical calculation. This method reveals the charge distribution before a disturbance caused by the “back discharge.” The charge density thus obtained ranges from several nC/cm2 up to about 60 nC/cm2. The density depends on the pressure, voltage height and the position of the streamer. The electric field on the insulator is analyzed numerically taking into account the surface charge. The internal electric field of the streamer is found to be 40 ~ 50 kV/cm · atm when the streamer ceases its propagation. However, it partly exceeds the critical one (89 kV/cm · atm) during the propagation.  相似文献   

8.
Surface PD (partial discharge) on an insulator from a TJ (triple junction) are reduced by recessing the TJ at the HV electrode. The insulators have an inner electrode connected to the ground potential. PD pulses whose magnitude is >10 pC are measured. The applied HV (50 Hz) is 1 to 1.5× higher than that at the initiation of the PD. The thickness of the insulator is in a range from 2 to 7.5 mm. For insulator thickness of 7.5 mm, the integrated magnitude and number of the PD pulses from the recessed TJ are reduced to ~20% and 50% of those from TJ without recess, respectively. The reduction in the pD by the recessed TJ is explained by the field conditions on the insulator near the TJ. It is considered that the reduction in the pD by the recessed TJ results mainly from the following three factors: high surface potential (Vs ) on the insulator, weak parallel component of electric field on the insulator surface, and strong normal component of the field on the surface. Propagation of the pD is restricted by these three factors. We have designed the improved configuration of recessed TJ in order to further emphasize these three factors. It is experimentally confirmed that the improved one reduces surface pD more efficiently than the recessed TJ before the improvement. At 7.5 mm insulator thickness, the integrated magnitude and number of pD pulses are reduced to ~5% and 15% of those for TJ without recess, respectively  相似文献   

9.
In this paper, the propagation characteristics of a creepage discharge on the surface of a solid insulator with a back electrode in perfluorocarbon liquid under an impulse voltage application are investigated. The propagation process is observed in detail by means of a high‐speed schlieren optical technique, and simultaneously waveforms of a current and a charge are also measured. Consequently, the polarity effect of the streamer propagation and the positive streamer which propagates stepwise can be seen. The latter is concurrent with the sparse current pulse which corresponds to the charge step‐variation. These results are compared with ones obtained in transformer oil. © 2000 Scripta Technica, Electr Eng Jpn, 131(4): 19–28, 2000  相似文献   

10.
This paper presents investigations on positive streamer discharges propagating in air along the surface of two nonmixing dielectric liquids. By measuring the currents associated with the streamer discharge propagating along the surface of the two nonmixing liquids for varying ratio of their volume, we analyzed the effect of the dielectric constant (the capacitive effect) and the surface properties. Especially, we separated and quantified the magnitude of each contribution. Two different combinations were studied: silicone oil together with glycerol and transformer oil together with glycerol. For these material combinations, we found that the influence of the dielectric constant is about 3 times larger than the effect of the surface properties. Further, by using a simple model of the streamer discharge, we determined with a 3D field calculation program the capacitive behavior of the two nonmixing dielectric materials for varying ratio of their volume. We found that, in order to obtain the observed capacitive dependence, the streamer must propagate literally on the insulator surface.  相似文献   

11.
Streamer discharges in tap water and distilled water have been generated by applying a voltage pulse from 120 to 175 kV and 500 ns duration to a wire-to-electrode configuration. Electrical and optical diagnostics were used to explore the temporal development of the streamers in tap and distilled water, at various applied voltages and both polarities. With the wire serving as anode, multiple, parallel streamer discharges were generated. The number density of these streamers along the wire decreases with decreasing electric field on the surface of the wire. The dependence of the streamer density on electric field indicates the role of field enhancement at inhomogeneous microstructures along the wire as streamer initiation mechanism. The appearance of the discharge was different for tap and distilled water. However, the measured average streamer propagation velocity from the positive wire to the grounded plane electrode, of 32 mm//spl mu/s, was independent of the water conductivity and the applied voltage. This suggests the existence of a self-sustained electric field at the streamer head. With the wire serving as cathode, only a weak light emission from the area close to the wire was observed, and streamers did not appear for the same voltage amplitude as with the positive polarity. This suggests that an ionic current flowing in the water is not dominant in the streamer propagation process.  相似文献   

12.
RTV涂层和增爬裙对绝缘子电场分布的影响   总被引:4,自引:4,他引:4  
为解变电站支柱绝缘子表面电场分布及RTV涂料、增爬裙的影响,用有限元法计算了洁净条件下支柱绝缘子的电场和电势分布规律,提出了模型建立的三原则——根据轴对称性简化模型;采用环形区域作为无限远求解区域;不剖分绝缘子的金属附件。运用上述原则算出RTV涂层绝缘子和增爬裙绝缘子电场分布,分析了RTV涂层绝缘子电场强度稍大的原因、涂层厚度对电场强度的影响及涂层内外部电场强度的关系。研究发现,RTV涂层绝缘子和增爬裙绝缘子表面电场分布的特点相似,绝缘子沿面电场强度与材料属性和结构参数有关。计算表明,0.3mm为涂层厚度的最佳参考值,这与实际情况相符。  相似文献   

13.
优化复合绝缘子结构,探讨场强、电位分布均匀性一直以来是一项重要的研究课题,通过ANSYS仿真软件建模,分析了复合绝缘子伞裙根部厚度与倾角大小对场强分布的影响。结果表明:增大复合绝缘子伞裙根部厚度,金具与护套连接处最大场强值、高压端与低压端金具处前3片绝缘子场强数值均随着增大;金具与护套连接处最大场强随着伞裙倾角度数增大而减小,但高压端与低压端金具前几片绝缘子场强数值随着增大,伞裙倾角变化与否对复合绝缘子电位分布值无根本性影响;理论上伞裙根部厚度取值12mm、倾角取值10°较为适宜。  相似文献   

14.
The insulation performance and the flashover mechanism of a vacuum gap bridged by an insulator in the shape of a conical frustum have been studied. The cone angle of the insulator is varied from 0 to 45 deg and the thickness of the insulator is varied from 5 to 15 mm. The gap is subjected to a lightning impulse voltage of 2/50 μs. The insulation performance is investigated by observing the ratio of the flashover voltage of the bridged gap to that of the gap without insulators. The flashover mechanism is investigated by observing the distribution of traces on the cathode surface due to flashovers and by analyzing the electric field near the insulator-cathode junction. Charging of the insulator due to electron collisions on its surface is considered in this analysis. As a result, it is found that the ratio is greater than 90 percent for a cone angle greater than a critical one when the top of the frustum is subjected to the positive impulses. It is found also that the trace distribution is related closely to the insulation performance.  相似文献   

15.
油纸绝缘复合电介质沿面放电是电力设备内绝缘的研究基础,其在雷电冲击电压下的绝缘特性是变压器绝缘设计的重要参数之一。为了获得油纸沿面流注传播与消散过程中电学、空间电荷分布演化规律及其关联关系,以交界面平行于施加电场方向的油纸系统为研究对象,通过构建适用于绝缘油油纸沿面流注动态变化特性的试验观测系统,可同步获得正极性雷电冲击电压下流注传播和消散过程中的电压、放电电流和放电通道流注阴影图像。利用该平台还测量了油纸沿面正极性雷电冲击击穿电压。试验结果表明,在正极性雷电冲击电压下天然酯绝缘油油纸绝缘相对介电常数差异并不会促进油纸沿面流注的传播过程,而粘度对于油纸沿面流注侧向分支影响显著。粘度越低,空间电荷在迁移过程中所受到的阻力越小,流注头部空间电荷在受到表面电荷的斥力后越容易往油中扩散,空间电荷在绝缘油中所形成的空间电场使得油纸沿面流注的主分支能够在绝缘油中传播,增加了油纸沿面流注传播距离,从而使低粘度天然酯绝缘油油纸沿面正极性雷电冲击击穿电压略高于其纯油击穿电压。  相似文献   

16.
Dynamic observation of surface charge distribution is the main advantage of the electro-optical Pockels effect technique over the dust figure technique, the photographic Lichtenberg figure technique, and the static potential probe scanning method. This technique is demonstrated here to observe the surface charge distribution deposited by partial discharge during application of one period of an 8 kV sinusoidal voltage to a needle-dielectric plane electrode system with zero gap spacing. Polarity effect and backdischarge are prominent in ac surface discharges. The observed polarity effect in the charge pattern shows that if the dielectric surface is initially free of surface charge, positive `streamer' channels burst out intermittently and radially from the needle tip resulting in a spoke-like surface charge distribution, while negative streamers expand almost uniformly in all radial directions resulting in a nearly circular surface charge distribution. This behavior results in quasi-permanent positive surface charges. Residual negative surface charge from prior discharges has a considerable influence on the trajectory of subsequent positive streamer discharges, i.e. causing deviation of positive streamer channels from the radial direction; whereas residual positive surface charge has little influence on the radial development of surface charge from subsequent negative discharges. This measurement technique has a potential for widespread application in investigating the dynamics of surface charging phenomena  相似文献   

17.
合成绝缘子表面电压和场强计算   总被引:2,自引:1,他引:2  
郭效金 《高压电器》2003,39(4):20-22
利用表面电荷法对绝缘子表面的电压分布和场强进行了计算,研究了影响电压分布的某些因素,如均压环、伞裙对电压分布的影响。计算表明,合成绝缘子的电压分布特性与瓷质绝缘子有很大不同,其电压分布非常不均匀,高压端承受了更高的电压。伞裙和均压环均能改善电压、场强分布,但合成绝缘子均压环对电压分布均匀性的改善不如瓷质悬式绝缘子。  相似文献   

18.
真空中绝缘子闪络前表面带电现象的仿真研究   总被引:2,自引:1,他引:1  
真空中绝缘子发生沿面闪络之前存在绝缘子表面的带电现象,该现象对闪络的发展具有重要影响,到目前为止对该现象进行实时测量还存在很大的难度。基于二次电子发射雪崩(secondary electron emission avalanche,SEEA)模型,利用Monte Carlo法研究了真空中圆柱型和圆台型绝缘子在闪络前表面电荷密度的二维分布。仿真中采用了氧化铝陶瓷、聚四氟乙烯(PTFE)、聚酰亚胺(PI)以及聚甲基丙烯酸甲酯(PMMA)等不同绝缘材料。考察了绝缘材料、施加电压以及圆锥绝缘子不同锥角对表面电荷密度和分布的影响。仿真结果表明,在靠近阴极处的绝缘子表面存在小区域的负电荷区,而后变为较大区域的正电荷区;二次电子发射系数较小的绝缘子表面的正电荷密度较小;随外施电压升高,负电荷的密度及区域减小,而正电荷的密度及区域增大,且正电荷区域的峰值向靠近阴极方向移动;圆台绝缘子的锥角为负时其表面正电荷密度大于锥角为正时的情况,当锥角在-22.5°~-30°之间时表面正电荷密度达到最大,而此时对应的闪络电压最低。仿真结果与实验结果有较好的对应关系。  相似文献   

19.
The electric field required for stable propagation of a positive streamer along an ice surface was investigated by measuring the currents associated with the streamer discharge.The influence of the surface properties,namely the existence of a water film on the ice surface and surface contamination,was analyzed.Results showed that in the presence of an ice surface,except in case of low conductive surface,streamers propagate stably with an external field lower than that generally measured for propagation in air alone(approximately 5 kV/cm).For higher contamination levels,the stability field was found to be slightly influenced by the temperature,while for lower contamination levels,it decreased significantly with an increase in temperature.  相似文献   

20.
The electrical characteristics of creeping discharges and single creeping streamers in transformer oil first are compared with those of streamers developing in the liquid bulk. The distribution of electric potential along the channel of a single negative creeping streamer is determined using a capacitive probe technique. Then the distribution of the space charge associated with each streamer channel is discussed and the electric field around the channels is estimated. A strong correlation between the mean potential gradient and the capacitance of the streamer channels is found. The different results and considerations tend to support the hypothesis of the same basic physical mechanism for both creeping discharges and streamers developing in the bulk  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号