首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
Monolithic SiC, for the first time, was successfully joined using a SiC whisker-reinforced Ti3SiC2 composite (SiCw/Ti3SiC2) filler via electric field-assisted sintering technique. A thin Ti coating layer was formed on the SiC surface to minimize the residual stress at the joint interface by transforming it into a TiC gradient layer. After optimizing process parameters, a joint strength higher than 250 MPa was obtained, which is higher than the other values reported in the literature. Failure occurred at the SiC base rather than the joining interface because of the improved joint strength by the incorporation of SiCw. The addition up to 15 wt. % SiCw in the filler layer improved the joint strength by various strengthening mechanisms. On the other hand, the joint strength was lower with 20 wt. % SiCw addition, indicating the importance of thermal expansion mismatch between SiCw and Ti3SiC2 to obtain a sound SiC joint.  相似文献   

2.
The in-situ formed SiC/Al4SiC4 joining layer was used to join monolithic SiC using an electric field-assisted sintering technique. A multiphase powder of Al4C3/SiC/Al4SiC4 was used as the initial joining material to obtain the in-situ reaction layer of SiC/Al4SiC4 via the appropriate interface reactions. The bending strength as high as 240.5 ± 6.6 MPa was obtained for the sample joined at 1800 °C, which was higher than the strength of the un-joined SiC matrix. Sound joints were obtained when Al4C3 was completely transformed to Al4SiC4, and a fully dense SiC/Al4SiC4 joining layer was consolidated. The integration of the joining layer with the SiC matrix was improved by a high amount of liquid phase formed at the interface. The proposed SiC/Al4SiC4 joining layer, with good thermal matching with SiC matrix, shows a great potential to be applied as a joining material for SiC-based ceramic matrix composites.  相似文献   

3.
A pair of Ti3SiC2 reinforced with SiC whiskers (SiCw/Ti3SiC2) composites was successfully joined without any joining materials using electric field-assisted sintering technology at a temperature as low as 1090°C (Ti) and a short time of 30 s. The microstructure and mechanical properties of the obtained SiCw/Ti3SiC2 joints were investigated. The solid-state diffusion was the main joining mechanism, which was facilitated by a relatively high current density (~586 A/cm2) at the joining interface. The shear strength of the sample joined at 1090°C was 51.8 ± 2.9 MPa. The sample joined at 1090°C failed in the matrix rather than at the interface, which confirmed that a sound inter-diffusion bonding was obtained. A rapid and high efficient self-joining process may find application in the case of SiCw/Ti3SiC2 sealing cladding tube and end cap.  相似文献   

4.
Monolithic SiC, for the first time, was seamless joined at a low temperature of 1200 °C using electric field-assisted sintering technology. A 300 nm Yb coating on SiC was used as the joining filler to form Yb3Si2C2 via an in-situ reaction with the SiC. A liquid phase was formed by an eutectic reaction between Yb3Si2C2 and SiC. Almost completely seamless joints were formed by the precipitated SiC grains, which were fully consolidated with the SiC matrix with the help of in-situ formed liquid phase, followed by its elimination under the uniaxial pressure. The bending strength of the seamless joint joined at 1500 °C for 15 min was as high as 257.2 ± 31.1 MPa, which was comparable to the strength of the SiC matrix. As a result, the failure occurred in the matrix indicated a sound joint was obtained. The proposed low temperature seamless joining could potentially be used for joining of SiC-based composite.  相似文献   

5.
SiC ceramics were brazed by electric field-assisted sintering technology using CoFeCrNiCuTi high-entropy alloy as joining filler. The effect on the interface microstructure and bend strength of brazed joints at different brazing temperature was systemically studied. The interfacial reaction was controlled by adjusting the brazing temperature. The main components in the brazing seam are high-entropy alloys FCC (HEAF), C, TiC, CrC, and Cr23C6 phase. Furthermore, the maximum bending strength of 54 MPa was found when brazed at a lower temperature of 1125℃. In addition, due to the electric field-assisted sintering technology and the high-entropy effect of the CoFeCrNiCuTi filler, the diffusion of elements and the formation of solid solution were accelerated. This suggests that the current field was beneficial to improve the inter-diffusion between the CoFeCrNiCuTi filler and SiC ceramics. Consequently, the low-temperature rapid brazing of SiC ceramics was realized, and this technology provides a new filler system for ceramic brazing.  相似文献   

6.
A new design of seamless joining was proposed to join SiC using electric field-assisted sintering technology. A 500 nm Y coating on SiC was used as the initial joining filler to obtain a desired transition phase of Y3Si2C2 layer via the appropriate interface reactions with the SiC matrix. The phase transformation and decomposition of the transition phase of Y3Si2C2 was designed to achieve almost seamless joining of SiC. The decomposition of the joining layer to SiC, followed up by the inter-diffusion and complete densification with the initial SiC matrix, resulted in the formation of an almost seamless joint at the temperature of 1900 °C. The bending strength of the seamless joint was 134.8 ± 2.1 MPa, which was comparable to the strength of the SiC matrix. The proposed design of seamless joining could potentially be applied for joining of SiC-based ceramic matrix composites with RE3Si2C2 as the joining layer.  相似文献   

7.
High solids loading silicon carbide (SiC)-based aqueous slurries containing only .5 wt. % organic additives were utilized to create specimens of various geometries via an extrusion-based additive manufacturing (AM) technique. Pressureless electric field-assisted sintering was performed to densify each specimen without deformation. The combination of these techniques produced parts with >98% relative density despite containing only 5 wt.% oxide sintering additives. After sintering, specimens contained only the α-SiC and yttrium aluminum perovskite phases. This suggests the evolution of a nonequilibrium yttrium aluminate phase, as well as transformation from β-SiC to α-SiC. The fabrication method presented in this work has advantages over other AM techniques commonly used with SiC, because it does not require significant organic additives nor additional postprocessing steps such as chemical vapor infiltration or polymer impregnation and pyrolysis.  相似文献   

8.
CVD–SiC coated C/SiC composites (C/SiC) were joined by spark plasma sintering (SPS) by direct bonding with and without the aid of joining materials. A calcia-alumina based glass–ceramic (CA), a SiC + 5 wt% B4C mixture and pure Ti foils were used as joining materials in the non-direct bonding processes. Morphological and compositional analyses were performed on each joined sample. The shear strength of joined C/SiC was measured by a single lap test and found comparable to that of C/SiC.  相似文献   

9.
A novel Pr3Si2C2 additive was uniformly coated on SiC particles using a molten-salt method to fabricate a high-density SiC ceramics via liquid-phase spark plasma sintering at a relatively low temperature (1400°C). According to the calculated Pr–Si–C-phase diagram, the liquid phase was formed at ∼1217°C, which effectively improved the sintering rate of SiC by the solution–reprecipitation process. When the sintering temperature increased from 1400 to 1600°C, the thermal conductivity of SiC increased from 84 to 126 W/(m K), as a consequence of the grain growth. However, an increasing amount of the sintering additive increased the interfacial thermal resistance, resulting in a decrease of thermal conductivity of the materials. The highest thermal conductivity of 141 W/(m K) was obtained for the material having the largest SiC grains and an optimized amount of the additive at the grain boundaries and triple junctions. The proposed Pr3Si2C2-assisted liquid-phase sintering of SiC can be potentially used for the fabrication of SiC-based ceramic composites, where a low sintering temperature would inhibit the grain growth of SiC fibers.  相似文献   

10.
A ternary carbide Dy3Si2C2 coating was fabricated on the surface of SiC through a molten salt technique. Using the Dy3Si2C2 coating as the joining interlayer, seamless joining of SiC ceramic was achieved at temperature as low as 1500 °C. Phase diagram calculation indicates that seamless joining was achieved by the formation of liquid phase at the interface between Dy3Si2C2 and SiC, which was squeezed out under pressure and continuously consumed by the joining interlayer. This work implies the great potential of the family of ternary rare-earth metal carbide Re3Si2C2 (Re = Y, La-Nd) as the sacrificial interlayer for high-quality SiC joining.  相似文献   

11.
SiC monoliths containing 5 wt.% Al2O3-Y2O3 additive were joined using a thin Ti3AlC2, TiC, or Ti filler. After joining at 1900 °C for 5 h under 3.5 MPa, the joint properties were compared in terms of the microstructure, phase evolution, joining strength, and possible elimination of the joining layer. Although all samples showed a sound joint, the microstructure differed according to the filler. SiC joined with Ti3AlC2 filler showed an indistinguishable joining interface due to the filler decomposition followed by solid-state diffusion into the SiC base, whereas TiC filler remained at the interface without showing decomposition or diffusion. In contrast, the Ti filler showed a possible elimination of the joining layer because of the diffusion of Ti and the formation of TiC. The mean joining strengths for the Ti3AlC2, TiC, and Ti fillers were 300, 234, and 248 MPa, respectively, which were comparable to that of the base SiC material (250 MPa).  相似文献   

12.
Cf/SiC composites were joined by spark plasma sintering technology using AlCoCrFeNi2.1 eutectic high-entropy alloy as the joining filler. The typical structure of the joint could be described as Cf/SiC/CrSi2 + HEAF + Al4C3 + C-rich phase/HEAF/CrSi2 + HEAF + Al4C3 + C-rich phase/Cf/SiC. Under the pressure of 30 MPa and at 1450 ℃ for 10 min, the shear strength of the joint was 9.85 MPa at room temperature. However, when a 50 µm thick Ti foil was added to obtain Ti foil/AlCoCrFeNi2.1/Ti foil composite filler, the joint strength was remarkably increased to 21.15 MPa at room temperature. The formation of TiC phase relieved the thermal stress at the joining interface. Due to the high entropy effect of AlCoCrFeNi2.1 filler, the central zone of the joint still contained the FCC structure of high-entropy alloy. The existence of the pulsed electric field was beneficial to element diffusion and microstructure homogenization, which improved the mechanical properties of the joint while shortening the joining cycle.  相似文献   

13.
A layered filler consisting of Ti3SiC2-SiC whiskers and TiC transition layer was used to join SiCf/SiC. The effects of SiCw reinforcement in Ti3SiC2 filler were examined after joining at 1400 or 1500 °C in terms of the microstructural evolution, joining strength, and oxidation/chemical resistances. The TiC transition layer formed by an in-situ reaction of Ti coating resulted in a decrease in thermal expansion mismatch between SiCf/SiC and Ti3SiC2, revealing a sound joint without cracks formation. However, SiCf/SiC joint without TiC layer showed formation of cracks and low joining strength. The incorporation of SiCw in Ti3SiC2 filler showed an increase in joining strength, oxidation, and chemical etching resistance due to the strengthening effect. The Ti3SiC2 filler containing 10 wt.% SiCw along with the formation of TiC was the optimal condition for joining of SiCf/SiC at 1400 °C, showing the highest joining strength of 198 MPa as well as improved oxidation and chemical resistance.  相似文献   

14.
A reliable full-ceramic interface of ZrC-SiC composite was achieved rapidly at low temperature via pulsed electric current joining. Using a Ti foil as joining interlayer, the Zr and Si atoms reacted with Ti to form Ti3Zr3Si3, while the dissolved C precipitated in form of TiC. The current delivering during joining promoted the atomic diffusion and caused the preferential growth of TiC, rapidly achieving a full-ceramic interface at 1300 ℃. Evaluating the reliability by Weibull distribution, the full-ceramic interface exhibited a considerable characteristic strength of 178 MPa, and its reliability was better than the raw ZrC-SiC composite. The in-situ formed ceramic interface toughened the joint via the mechanism of multi-cracking, crack deflection and termination. The proposed method provides a practical technology for the rapid joining of ultra-high temperature composites or the construction of layered composites with high toughness at low temperature.  相似文献   

15.
SiC-coated 3D C/SiC composites were successfully joined with a Ti-Nb-Ti interlayer by SPS. When joined at 1200 °C, the apparent shear strength of the samples was as high as 61 ± 6 MPa as a result of an appropriate interface diffusion reaction. However, higher joining temperature (1600 °C) resulted in significantly lower shear strengths, and this was associated with the observed depletion of Si atoms and Kirkendall voids at the joining interface. Subsequently, a detailed characterization was performed by FIB/TEM/STEM. The interdiffusion mechanism of the samples during the joining process was revealed by thermodynamics and diffusion kinetics, and different interdiffusion mechanisms were associated with the evolution of the phase composition. The micro voids formed via Kirkendall effect were observed to grow rapidly with the joining temperature, resulting in catastrophic joint failure. Finally, these results were used to propose a failure model for the joints.  相似文献   

16.
Flash joining of CVD-SiC coated Cf/SiC samples with a Ti interlayer was achieved using a Spark Plasma Sintering machine. The influence of different heating powers and discharge times were investigated. The sample flash joined at a maximum heating power of 2.2 kW (peak electric current of 370 A) within 7 s showed the highest apparent shear strength of 31.4 MPa, which corresponds to the interlaminar shear strength of the composites. A maximum joining temperature of ∼1237 °C was reached during the flash joining. An extremely rapid heating rate of 9600 °C/min combined with a very short processing time hindered any reaction between the CVD-SiC coating and the Ti interlayer. The formation of a metallic joint (Ti based) in the absence of any detectable reaction phase is proposed as a new joining mechanism. For a conventionally joined SPS sample, the formation of titanium silicide phases inhibited the formation of a bond.  相似文献   

17.
Abstract

Fully densified Al2O3 ceramics with fine grain size were obtained by pulsed electric current sintering through a two-step heating profile (referred to as TS-PECS). Highly transparent Al2O3 polycrystals with fine grain size (400 nm) were successfully fabricated by the TS-PECS process, namely, sintering at 1000°C for 1 h and followed at 1200°C for 20 min under uniaxial pressure of 100 MPa. Effects of the first step temperature and heating rate were discussed for bulk density, grain size and transparency. The temperature in the first step strongly affects densification and grain growth of Al2O3. On the other hand, heating rate, even of 100 K min?1, in TS-PECS does not give significant influences on densification and grain growth of Al2O3. Inline transmittance at 640 nm in wavelength normalised to 1 mm in thickness is increased by decreasing heating rate even in TS-PECS.  相似文献   

18.
Direct ink writing (DIW) and low-temperature sintering methods were applied to prepare Si2N2O-Si3N4 ceramics for radome materials. Lattices of Si-SiO2 green body were printed by DIW with 78 wt % solid portion of water-based Si-SiO2 slurry, in which silicon particles and silica fume were used as the solid portion and Methylcellulose (HPMC) was used as the dispersant. Effects of HPMC addition on stability and silica fume content on rheological properties of the slurry were studied, respectively. The pseudoplastic mechanism of the slurry was analyzed. The Si-SiO2 green bodies were sintered at 1250 °C–1400 °C in nitrogen. The effect of temperature on phase composition, microstructure, mechanical and dielectric properties of samples was investigated. With the HPMC addition of 0.12 wt% and the silica fume proportion of 30 wt% in solid portion, a stable and pseudoplastic slurry with the yield stress of 110.9 Pa was obtained, which is suitable for DIW. With the decrease of initial holding temperature, more N2 enters the sample and reacts with silicon and silica fume, promoting the generation of Si2N2O and Si3N4. The optimal condition yields Si2N2O-Si3N4 ceramics with apparent porosity of 42.73%, compressive strength of 24.7 MPa, dielectric constant of 4.89 and loss tangent of 0.0054. It is found that columnar Si3N4 comes from a direct reaction between silicon and N2, and fibrous Si2N2O is mainly generated by the reaction between silicon, SiO(g), and N2 through the chemical vapor deposition mechanism. Good dielectric properties are achieved due to high porosity, high proportion of Si2N2O phase and no residual silicon.  相似文献   

19.
Dense Si3N4 ceramics were fabricated by pressureless sintering at a low temperature of 1650°C with a short holding period of 1 h under a nitrogen atmosphere. The role of ternary oxide additives (Y2O3–MgO–Al2O3, Y2O3–MgO–SiO2, Y2O3–MgO–ZrO2) on the phase, microstructure, and mechanical properties of Si3N4 was examined. Only 5 wt.% of Y2O3–MgO–Al2O3 additive was sufficient to achieve >98% of theoretical density with remarkably high biaxial strength (∼1200 MPa) and prominent hardness (∼15.5 GPa). Among the three additives used, Y2O3–MgO–Al2O3 displayed the finest grain diameter (0.54 μm), whereas Y2O3–MgO–ZrO2 produced the largest average grain diameter (∼0.95 μm); the influence was seen on their mechanical properties. The low additive content Si3N4 system is expected to have superior high-temperature properties compared to the system with high additive content. This study shows a cost-effective fabrication of highly dense Si3N4 with excellent mechanical properties.  相似文献   

20.
Pulsed electric current sintering (PECS) was applied to obtain transparent ruby polycrystals. Al2O3-Cr2O3 powder mixture was prepared by drying an aqueous slurry consisting of Al2O3 and Cr(NO3)3 followed by PECS consolidation in vacuum at a sintering temperatures ranging from 1100 to 1300 °C with various heating rates between 2 and 100 °C/min and under an applied pressures from 40 to 100 MPa. Slow heating rate and high-pressure lead to highly densified and transparent Cr-doped Al2O3 polycrystals at sintering temperature of 1200 °C.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号