首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 578 毫秒
1.
0.9(Mg0.95Zn0.05)2(Ti0.8Sn0.2)O4–0.1(Ca0.8Sr0.2)TiO3 (MZTS–CST) ceramics were prepared by a conventional solid‐state route. The MZTS–CST ceramics sintered at 1325°C exhibited εr = 18.2, Q × f = 49 120 GHz (at 8.1 GHz), and τf = 15 ppm/°C. The effects of LiF–Fe2O3–V2O5 (LFV) addition on the sinterability, phase composition, microstructure, and microwave dielectric properties of MZTS–CST were investigated. Eutectic liquid phases 0.12CaF2/0.28MgF2/0.6LiF and MgV2O6 were developed, which lowered the sintering temperature of MZTS–CST ceramics from 1325°C to 950°C. X‐ray powder diffraction (XRPD) and energy dispersive spectroscopy (EDS) analysis revealed that MZTS and CST coexisted in the sintered ceramics. Secondary phase Ca5Mg4(VO4)6 as well as residual liquid phase affected the microwave dielectric properties of MZTS–CST composite ceramics. Typically, the MZTS–CST–5.3LFV composite ceramics sintered at 950°C showed excellent microwave dielectric properties: εr = 16.3, Q × f = 30 790 GHz (at 8.3 GHz), and τf = ?10 ppm/°C.  相似文献   

2.
Low-temperature-fired microwave ceramics are key to realizing the integration and miniaturization of microwave devices. In this study, a facile wet chemical method was applied to synthesize homogenous nano-sized CaF2 powders for simultaneously achieving low-temperature sintering and superior microwave dielectric properties. Pure CaF2 ceramics sintered at 950 °C for 6 h with good microwave dielectric properties (εr = 6.22, Q×f = 36,655 GHz, and τf = ?102 ppm/°C) was achieved. The microwave dielectric properties of the CaF2 ceramics were further improved by introducing LiF as a sintering aid. The sintering temperature of CaF2-based ceramics was effectively lowered from 950 °C to 750 °C with 10 wt% LiF doping, and excellent microwave dielectric properties (εr = 6.37, Q×f = 65,455 GHz, and τf = ?71 ppm/°C) were obtained.  相似文献   

3.
La1‐xZnxTiNbO6‐x/2 (LZTN‐x) ceramics were prepared via a conventional solid‐state reaction route. The phase, microstructure, sintering behavior, and microwave dielectric properties have been systematically studied. The substitution of a small amount of Zn2+ for La3+ was found to effectively promote the sintering process of LTN ceramics. The corresponding sintering mechanism was believed to result from the formation of the lattice distortion and oxygen vacancies by means of comparative studies on La‐deficient LTN ceramics and 0.5 mol% ZnO added LTN ceramics (LTN+0.005ZnO). The resultant microwave dielectric properties of LTN ceramics were closely correlated with the sample density, compositions, and especially with the phase structure at room temperature which depended on the orthorhombic‐monoclinic phase transition temperature and the sintering temperature. A single orthorhombic LZTN‐0.03 ceramic sintered at 1200°C was achieved with good microwave dielectric properties of εr~63, Q×f~9600 GHz (@4.77 GHz) and τf ~105 ppm/°C. By comparison, a relatively high Q × f~80995 GHz (@7.40 GHz) together with εr~23, and τf ~?56 ppm/°C was obtained in monoclinic LTN+0.005ZnO ceramics sintered at 1350°C.  相似文献   

4.
《Ceramics International》2016,42(9):11003-11009
A low temperature sintering method was used to avoid the relatively high sintering temperatures typically required to prepare 0.67CaTiO3–0.33LaAlO3 (CTLA) ceramics. Additionally, CeO2 was introduced into the CTLA ceramics as an oxygen-storage material to improve their microwave dielectric properties. 0.67CaTiO3–0.33LaAlO3 ceramics co-doped with B2O3–Li2O–Al2O3 and CeO2 were prepared by a conventional two-step solid-state reaction process. The sintering behavior, crystal structure, surface morphology, and microwave dielectric proprieties of the prepared ceramic samples were studied, and the reaction mechanism of CeO2 was elucidated. CTLA+0.05 wt% BLA+3 wt% CeO2 ceramics sintered at 1360 °C for 4 h exhibited the optimal microwave dielectric properties: dielectric constant (εr)=45.02, quality factor (Q×f)=43102 GHz, and temperature coefficient of resonant frequency (τf)=2.1 ppm/°C. The successful preparation of high-performance microwave dielectric ceramics provides a direction for the future development and commercialization of CTLA ceramics.  相似文献   

5.
Novel 0.695CaTiO3-0.305SmAlO3+xwt% CeO2 (x = 0, 0.5, 1.0, 1.5) ceramics were fabricated using a reaction-sintering (RS) approach. The crystal structure, morphology, and microwave dielectric properties of ceramics were systematically studied. The addition of CeO2 could effectively improve the sintering behavior of 0.695CaTiO3-0.305SmAlO3 (CTSA) ceramics. When x = 0.5 wt%, the ceramics exhibited optimal microwave dielectric properties, with εr = 43.9, Q×f = 48 779 GHz, and τ? = ?0.24 ppm/°C, thereby indicating that the samples prepared via the RS route possess superior dielectric properties compared to those prepared by the conventional solid phase reaction. The results demonstrate that CaTiO3-SmAlO3 ceramics can be prepared simply and efficiently through a reaction-sintering process.  相似文献   

6.
The crystal structure and microwave dielectric properties of a novel low‐firing compound Li2Mg2W2O9 were investigated in this study. The phase purity and crystal structure were investigated using X‐ray diffraction analyses and Rietveld refinement. The best microwave dielectric properties of the ceramic with a low permittivity (εr) ~11.5, a quality factor (× f) ~31 900 GHz (at 10.76 GHz) and a temperature coefficient of the resonant frequency (τf) ~ ?66.0 ppm/°C were obtained at the optimum sintering temperature (920°C). CaTiO3 was added into the Li2Mg2W2O9 ceramic to obtain a near zero τf, and 0.93Li2Mg2W2O9–0.07CaTiO3 ceramic exhibited improved microwave dielectric properties with a near‐zero τf ~ ?1.3 ppm/°C, a εr ~21.6, a high Qu × f value ~20 657 GHz. The low sintering temperature and favorable microwave dielectric properties make it a promising candidate for LTCC applications.  相似文献   

7.
Novel low temperature firing microwave dielectric ceramic LiCa3MgV3O12 (LCMV) with garnet structure was fabricated by the conventional solid‐state reaction method. The phase purity, microstructure, and microwave dielectric properties were investigated. The densification temperature for the LCMV ceramic is 900°C. LCMV ceramic possessed εr = 10.5, Qu × = 74 700 GHz, and τf = ?61 ppm/°C. Furthermore, 0.90LiCa3MgV3O12–0.10CaTiO3 ceramic sintered at 925°C for 4 h exhibited good properties of εr = 12.4, Qu × = 57 600 GHz, and τf = 2.7 ppm/°C. The LCMV ceramic could be compatible with Ag electrode, which makes it a promising ceramic for LTCC technology application.  相似文献   

8.
《Ceramics International》2016,42(16):18087-18093
Ba3CaNb2O9 is a 1:2 ordered perovskite which presents a trigonal cell within the D3d3 space group. Dense ceramics of Ba3CaNb2O9 were prepared by the solid-state reaction route, and their microwave dielectric features were evaluated as a function of the sintering time. From Raman spectroscopy, by using group-theory calculations, we were able to recognize the coexistence of the 1:1 and 1:2 ordering types in all samples, in which increasing the sintering time tends to reduce the 1:1 domain, leading to an enhancement of the unloaded quality factor. We concluded that this domain acts as a lattice vibration damping, consequently raising the dielectric loss at microwave frequencies. The best microwave dielectric parameters were determined in ceramics sintered at 1500 °C for 32h: ε′ ~ 43; Qu×fr = 15,752 GHz; τf ~ 278 ppm °C−1.  相似文献   

9.
《Ceramics International》2016,42(7):7962-7967
Y2O3 ceramics with good dielectric properties were prepared via co-precipitation reaction and subsequent sintering in a muffle furnace. The effects of Nd doping and sintering temperature on microwave dielectric properties were studied. With the increase in sintering temperature, the density, quality factor (Q×f), and dielectric constant (εr) values of pure Y2O3 ceramics increased to the maximum and then gradually decreased. The Y2O3 ceramics sintered at 1500 °C for 4 h showed optimal dielectric properties: εr=10.76, Q×f=82, 188 GHz, and τf=−54.4 ppm/°C. With the addition of Nd dopant, the Q×f values, εr, and τf of the Nd: Y2O3 ceramics apparently increased, but excessive amount degraded the quality factor. The Y2O3 ceramics with 2 at% Nd2O3 sintered at 1460 °C displayed good microwave dielectric properties: εr=10.4, Q×f=94, 149 GHz and τf=−46.2 ppm/°C.  相似文献   

10.
The influences of Li2O-B2O3-SiO2 glass (LBS) on the activation energy, phase composition, the stability of the structure and microwave dielectric properties of Zn0.15Nb0.3Ti0.55O2 ceramics have been systematically investigated. LBS glass acted as flux former and contributed to the reactive liquid-phase sintering mechanism, which remarkably lowed the sintering temperature from 1150?°C to 900?°C and enhanced the shrinkage and densification of ceramic at the low sintering temperatures. The ceramics with 1.5?wt% LBS glass sintered at 900?°C for 3?h show great properties: εr = 73.59, Q × f = 8024?GHz, τf = 270.54?ppm/°C.  相似文献   

11.
We report a series of ReVO4 (Re = La, Ce) microwave dielectric ceramics fabricated by a standard solid‐state reaction method. X‐ray diffraction and scanning electron microscopy measurements were performed to explore the phase purity, sintering behavior, and microstructure. The analysis revealed that pure and dense monoclinic LaVO4 ceramics with a monazite structure and tetragonal CeVO4 ceramics with a zircon structure could be obtained in their respective sintering temperature range. Furthermore, LaVO4 and CeVO4 ceramics sintered at 850°C and 950°C for 4 h possessed out‐bound microwave dielectric properties: εr = 14.2, Q × f = 48197 GHz, τf = ?37.9 ppm/°C, and εr = 12.3, Q × f = 41 460 GHz, τf = ?34.4 ppm/°C, respectively. The overall results suggest that the ReVO4 ceramics could be promising materials for low‐temperature‐cofired ceramic technology.  相似文献   

12.
Novel microwave dielectric ceramics in the Li2MnO3 system with high Q prepared through a conventional solid‐state route had been investigated. All the specimens exhibited single phase ceramics sintered in the temperature range 1140°C–1230°C. The microwave dielectric properties of Li2MnO3 ceramics were strongly correlated with sintering temperature and density. The best microwave dielectric properties of εr = 13.6, Q × f = 97 000 (GHz), and τf = ?5.2 ppm/°C could be obtained as sintered at 1200°C for 4 h. BaCu(B2O5) (BCB) could effectively lower the sintering temperature from 1200°C to 930°C and slightly induced degradation of the microwave dielectric properties. The Li2MnO3 ceramics doped with 2 wt% BaCu(B2O5) had excellent dielectric properties of εr = 11.9, Q × f = 80 600 (GHz), and τf = 0 ppm/°C. With low sintering temperature and good dielectric properties, the BCB added Li2MnO3 ceramics are suitable candidates for LTCC applications in wireless communication system.  相似文献   

13.
Mg(Zr0.05Ti0.95)O3 (MZrT) ceramics nanoparticles have been synthesized by polyol method for the first time. The phase evaluation of the MZrT nanoparticles was confirmed using thermo gravimetric analysis and the phase purity of the samples were analyzed using X‐ray diffraction and Raman spectroscopy. The transmission electron microscopy (TEM) images revealed the average particle size between 30 and 40 nm. The optical bandgap is in the range of 3.66‐3.82 eV and is attributed to the quantum confinement effect. Interestingly, the nanopowders sintered at 950°C for 3 hours exhibit the maximum density of 97.52% of the theoretical density which is attributed to the higher sintering velocity of the smaller particles. The obtained microstructure of the ceramics reveals porous free uniform microstructure with prominent grain boundaries. A best combination of microwave dielectric properties (εr ~18.04, Q × fo ~175 THz at 9.5 GHz) are obtained for MZrT ceramics sintered at 950°C for 3 hours. The non‐Debye‐like relaxation process is found to exist inside the sample confirmed by impedance spectroscopy. The AC conduction mechanism is explained on the basis of Correlated Barrier Hopping model. Thermal conductivity of the MZrT ceramics is found to be 10 W/mK. The obtained properties of MZrT ceramics are suitable for resonator, microwave integrated circuit and LTCC applications.  相似文献   

14.
CaMgSi2O6 (CMS) ceramics prepared by the solid-state ceramic route have a sintering temperature of 1300°C/2 h. The sintering temperature of CMS was reduced below the melting point of Ag using low-melting LBS and LMZBS glasses. In the case of CMS+15 wt% LMZBS sintered at 900°C/2 h, the dielectric properties obtained were ɛr=8.2, Qu×f=32,000 GHz (10.15 GHz), and τf=–48 ppm/°C. The CMS+15 wt% LBS composite, sintered at 925°C/2 h, showed ɛr=8, Qu×f=15,000 GHz (10.17 GHz), and τf=–49 ppm/°C. The chemical compatibility of Ag with the ceramic–glass composites was also investigated for low-temperature co-fired ceramic applications.  相似文献   

15.
The sillimanite (Al2SiO5) mineral has been sintered by conventional ceramic route and by cold sintering methods. The mineral has very poor sinterability and transformed to mullite on sintering above 1525 °C. The dielectric properties of sillimanite mineral (Al2SiO5) are investigated at radio and microwave frequency ranges. The mineral sintered at 1525 °C has low εr of 4.71 and tanδ of 0.002 at 1 MHz and at microwave frequency εr = 4.43, Qu × f = 41,800 GHz with τf = −17 ppm/°C. The sintering aid used for cold sintering Al2SiO5 is sodium chloride (NaCl). The Al2SiO5NaCl composite was cold sintered at 120 °C. XRD analysis of the composite revealed that there is no additional phase apart from Al2SiO5 and NaCl. The densification of the Al2SiO5NaCl composite was confirmed by using microstructure analysis. The Al2SiO5NaCl composite has εr of 5.37 and tanδ of 0.005 at 1 MHz whereas at microwave frequency it has εr = 4.52, Qu × f = 22,350 GHz with τf = −24 ppm/°C. The cold sintered NaCl has εr = 5.2, Qu × f = 12,000 GHz with τf = −36 ppm/°C.  相似文献   

16.
In this study, LiF was utilized to decrease sintering temperature, improve microstructure, enhance Q×f, and regulate τf of Li2Ti0.9(Zn1/3Ta2/3)0.1O3 (abbreviated as LTZT) ceramics. A complete solid solution together with a phase transition from monoclinic to cubic rock salt structure occurred. The cell volume of LTZT ceramics decreased as the LiF content increased. Relatively dense and uniform microstructures were observed for the ceramics as the LiF content was not less than 2 wt%. The dielectric constant of LTZT ceramics initially increased and then decreased with the increasing LiF content. The FWHM of the Raman band at about 808 cm?1 was closely related to the Q×f value. Notably, the samples with 3 wt% LiF exhibited the highest relative density of 97.4 % and satisfactory microwave dielectric properties of εr = 23.14 ± 0.16, Q×f = 110,090 ± 1100 GHz, and τf = +3.25 ± 1.45 ppm/°C when sintered at 950 °C. Good chemical compatibility with silver indicated the ceramic is a promising candidate in LTCC applications.  相似文献   

17.
A novel La2MgGeO6 ceramic was synthesized through a solid-state reaction process within a sintering temperature range of 1450–1550 °C. By a combination of X-ray diffraction and Rietveld refinement analyses, the ceramics were found to have a pure hexagonal phase structure belonging to space group R3/146. The scanning electron microscopy images revealed that the ceramic grains were closely connected. The effects of internal (lattice energy, valence bond, and fraction packing) and external factors (density) on the microwave properties of ceramics were also studied. The ceramic exhibited excellent microwave dielectric performances, with a relative permittivity (?r) of 21.2, a quality factor (Q × f) of 52 360 GHz, and a temperature coefficient of resonant frequency (τf) of ?44.2 ppm/°C, when sintered at 1500 °C for 4 h. The τf value of the La2MgGeO6 ceramic doped with CaTiO3 could be adjusted to zero. Particularly, 0.2La2MgGeO6-0.8CaTiO3 ceramics have good microwave dielectric properties with τf = +2.1 ppm/°C, Q × f = 15 610 GHz, and ?r = 40.3.  相似文献   

18.
The effects of LiF addition on the sinterability and microwave dielectric properties of (Mg0.95Zn0.05)2(Ti0.8Sn0.2)O4 (MZTS) ceramics were investigated. A small amount of LiF addition can effectively lower the sintering temperature of MZTS from 1325 °C to 1150 °C due to the liquid phase effect and induce no apparent degradation of the microwave dielectric properties. With increasing LiF content, the apparent density and dielectric constant decreased gradually, the quality factor increased firstly and then decreased. In particular, MZTS–3.0 wt% LiF ceramics sintered at 1150 °C for 5 h exhibited good microwave dielectric properties of ?r = 13.05, Q · f = 119,310 GHz (at 10 GHz) and τf = ?59.2 ppm/°C.  相似文献   

19.
A new ultralow-loss Sr2CeO4 microwave dielectric ceramic was prepared via a conventional solid-state method. The X-ray diffraction and Rietveld refinement results demonstrate that pure-phase Sr2CeO4 ceramics belong to the orthorhombic structure with a Pbam space group. Scanning electron microscopy analysis reveals dense and homogeneous microstructure. Optimum microwave dielectric properties of εr = 14.8, Q × f = 172,600 GHz (9.4 GHz) and τf = -62 ppm/°C were obtained as it was sintered at 1270 °C for 4 h. In addition, the substitution of a few amount of Ti4+ for Ce4+ was found to have significant influences on the grain morphology, sintering behavior, phase structure and microwave dielectric properties. Among them, the Sr2Ce0.65Ti0.35O4 ceramic sintered at 1350 °C for 4 h demonstrates near-zero τf of -1.8 ppm/°C, εr of 20.7 and Q×f of 115,550 GHz (8.1 GHz) because of its two-phase structure, showing large application potentials.  相似文献   

20.
《Ceramics International》2017,43(5):4570-4575
Novel monoclinic Bi2O3-xRE2O3-yMoO3 (RE=Pr, Nd, Sm, and Yb) based low temperature co-fired ceramics (LTCC) systems with high sintering density and low microwave dielectric loss are synthesized by conventional solid state reaction technique. The structure and dielectric properties of Bi2O3-xRE2O3-yMoO3 ceramics are investigated. Dense BiNdMoO6 ceramics sintered at 900 °C for 8 h in air have a low dielectric constant εr=~7.5, a high quality factor Q×f=~ 24, 800 GHz at 7.0 GHz, and τf=~−16 ppm/̊C. Especially, good chemical compatibility of BiNdMoO6 with Ag electrodes is represented as well. In contrast, BiSmMoO6 ceramics sintered at 1000 °C for 8 h show enhanced Q×f=~43, 700 GHz at 7.8 GHz with εr=~8.5 and τf=~−27 ppm/°C. Bi2O3-xRE2O3-yMoO3 (RE=Pr, Nd, Sm, and Yb) based ceramics could be considered as promising microwave ceramics for LTCC applications.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号