首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 46 毫秒
1.
《Ceramics International》2020,46(14):22057-22066
To understand the wetting behavior and interfacial phenomena between molten superalloys and ceramic materials, the wettability and interfacial reactions of a low Hf-containing Nickel-based superalloy on the Al2O3-based, SiO2-based, ZrSiO4, and CoAl2O4 substrates were studied using the sessile drop method at 1773 K. The wetting angles of the alloy on the Al2O3-based, SiO2-based, ZrSiO4, and CoAl2O4 substrates were 141.4°, 143.5°, 135.7°, and 128.4°, respectively. This indicated that the wettability of the alloy on the Al2O3-based substrate was comparable to that on the SiO2-based substrate, and the wettability of the CoAl2O4 system was the best among the four systems. The microstructure characteristics of the interface implied that Hf has a strong tendency to react with ceramic substrates, even at low contents. Additionally, the interfacial reactions transformed the Al2O3-based, SiO2-based, ZrSiO4, and CoAl2O4 ceramic substrates into (Al2O3 + HfO2), (Al2O3 + HfO2), (Al2O3 + HfO2 + ZrO2), and (Al2O3 + HfO2 + Co), respectively, which were in contact with the alloys. The experimental results demonstrated that the wettability of the system was governed by the properties of the reaction products.  相似文献   

2.
In the present study, the wettability between liquid iron with two different Al contents and MgOAl2O3 binary substrates was studied in reducing atmosphere. The contact angles between liquid iron with 18?ppm Al and MgO, MgO·Al2O3, Al2O3 were 133.5°, 113.7°, 126.9° respectively. With the variation of the substrate composition, the contact angles for the intermediate binary phases of the three components (MgO, MgO·Al2O3, Al2O3) obeyed the Cassie theory. In the experiment using iron with 370?ppm Al, all the contact angles were higher than that using low Al-containing iron. The surface of the iron drop was covered with an oxide layer, which mainly consisted of many small particles. With the variation of the substrate gradually from MgO to Al2O3, the composition of the oxide layer changed from MgO·Al2O3 to CaOAl2O3. The formation of the oxide layer prevented the spreading of liquid iron, leading to the increase of the contact angle.  相似文献   

3.
In flowing nitrogen, non‐oxides such as Al4O4C, Al2OC, Zr2Al3C4, and MgAlON bonded Al2O3‐based composites were successfully prepared by a gaseous phase mass transfer pathway using aluminum, zirconia, alumina, and magnesia as raw materials at 1873 K, after an Al–AlN core‐shell structure was formed at 853 K. Resin bonded Al–Al2O3–MgO–ZrO2 composites after sintering were characterized and analyzed by X‐ray diffraction (XRD), scanning electron microscope (SEM) and, energy dispersive spectrometer (EDS), and the influence of the MgO content on the sintered composites was studied. The results show that after sintering, the phase composition of the Al–Al2O3–ZrO2 composite is Al2O3, Al4O4C, Al2OC, and Zr2Al3C4, while the phase composition of the Al–Al2O3–ZrO2 composite with the addition of MgO 6 wt% and MgO 12 wt% is Al2O3, MgAlON, Al4O4C, Al2OC, and Zr2Al3C4 as well as Al2O3, MgAlON, Al2OC, and Zr2Al3C4, respectively. The addition of MgO changed the phase composition and distribution for the resin bonded Al–Al2O3–MgO–ZrO2 system composites after sintering. When the added MgO content is equal to or more than 12 wt%, the Al4O4C in the resin bonded Al–Al2O3–MgO–ZrO2 system composites is unable to exist in a stable phase.  相似文献   

4.
The corrosion resistance and mechanical properties directly affects the operation and service life of Al2O3-Cr2O3 refractories used in waste incinerators. In this study, ZrO2 particles were introduced via vacuum impregnation to adjust microstructure and properties of Al2O3-Cr2O3 refractories. The results showed that the impregnated ZrO2 particles and increasing impregnation times resulted in the decreased median pore size and increased compactness, and mechanical strengths of refractories were elevated from the inhibited cracks propagation by ZrO2 particles. The decreased amounts of large pores and increased amounts of small pores from the filled ZrO2 particles inhibited penetration of low melting point phases, and the formed CaZrO3 phase from the reactions between corrosion reagent and ZrO2 particles increased the viscosity of penetrated corrosion reagent, resulting in the decreased penetration index from 8.57% to 2.58%. Meanwhile, the filled ZrO2 particles around alumina particles prevented reactions between molten corrosion reagent and alumina, leading to the decreased corrosion index from 3.78% to .74%. The decreased pore size and formation of CaZrO3 phase were primary factors that enhanced the penetration resistance. And formation of wrapped layers from ZrO2 particles around alumina particles presented prominent effects on the strengthened corrosion resistance of Al2O3-Cr2O3 refractories.  相似文献   

5.
A series of Al2O3–ZrO2 composite supported NiMo catalysts with various ZrO2 contents were prepared. Several techniques including XRD, SEM, N2 physisorption, H2-TPR, and UV–vis DRS were used for typical physico-chemical properties characterization of the ZrO2–Al2O3 composite supports and their NiMo/ZrO2–Al2O3 catalysts. The test results showed that the composite supports prepared by the chemical precipitation method existed as amorphous phase in the samples with insufficient contents of ZrO2, and the incorporation of ZrO2 into supports provided a better dispersion of NiMo species, which made their reductions become easier. The pyridine-adsorbed FT-IR results indicated that the Lewis acid sites of catalysts increased significantly by the introduction of ZrO2 into the supports. The activities of these catalysts for diesel oil hydrodesulfurization (HDS) and hydrodenitrogenation (HDN) were evaluated in a high pressure micro-reactor system. The results showed that the ZrO2–Al2O3-supported NiMo catalysts with suitable ZrO2 contents exhibited much higher catalytic activities than that of Al2O3-supported one, and when the ZrO2 contents were 15% and 5%, the NiMo/Al2O3–ZrO2 catalysts presented the highest HDS and HDN activities, respectively.  相似文献   

6.
《Ceramics International》2019,45(11):14397-14403
In order to verify the “Al2O3-template-formation” mechanism of magnesium aluminate (MA) spinel proposed previously using Al2O3 and MgO micro-powders as raw materials, in this work, MA spinel was synthesized by nanograined, plate-like, and fibrous Al2O3 in LiCl molten salt at 1150 °C for 3 h, respectively. The products were characterized by XRD, SEM, TEM, and EDS techniques, and the grain size of the products and raw materials were analyzed. The results showed clearly that the MA spinel was initially nucleated and subsequently developed to octahedral crystal. When the reaction further took place, when using nanograined Al2O3, the newly formed MA spinel seeds initially moved and attached to the surface of the large octahedral MA spinel crystal, and they were subsequently engulfed by the large MA spinel crystal, which further grew via layer-by-layer to become micro-sized crystal. Using plate-like or fibrous Al2O3 raw material, MgO diffused continuously into the interior of Al2O3 to form MA spinel with a gradient growth from surface to depth. These revealed that whatever shape of Al2O3 was used, the synthesis of MA spinel was governed by “Al2O3-template formation mechanism”, i.e., by the reaction of MgO diffusion into the Al2O3 templet in the molten salt.  相似文献   

7.
Effect of CeO2 and Al2O3 contents on phase composition, microstructures, and mechanical properties of Ce–ZrO2/Al2O3 composites was studied. The CeO2 content in CeO2–ZrO2 varied from 7 to 16 mol%, and the Al2O3 content in Ce‐ZrO2/Al2O3 composites were 7 and 22 wt%. When CeO2 content was ≤10 mol%, high Al2O3 content contributed to hinder the tetragonal‐to‐monoclinic ZrO2 phase transformation during cooling and decrease the density of microcracks in the composites. Tetragonal ZrO2 single‐phase was obtained in the composites with ≥12 mol% CeO2, regardless of the Al2O3 content. Hardness, flexural strength, and toughness were dependent on CeO2 and Al2O3 contents which were related to the microcracks, grain size, and phase transformation. The high flexural strength and toughness of the composites with 7wt% Al2O3 could be obtained at an optimum CeO2 content of 12 mol%, whereas those of the composites with 22 wt% Al2O3 could be achieved in the wide CeO2 content range of 8.5‐12 mol%.  相似文献   

8.
《Ceramics International》2016,42(4):5153-5159
The crystal growth of AlN from aluminum oxides was studied using a thermal nitridation method. Four types of aluminum oxides, sintered Al2O3, ZrO2-containing sintered Al2O3, and a- and c-plane sapphires, were used as a source material. As observed, millimeter-sized AlN crystal grains were successfully grown from the ZrO2-containing sintered Al2O3 only at temperatures ranging from 2223 to 2323 K. The growth mechanism, including the role of ZrO2 additive, was discussed from a thermodynamic viewpoint. The following growth model was proposed: predominant nitridation of ZrO2 in Al2O3 suppresses Al2O3 nitridation, and the ZrO2–Al2O3 liquid phase forms, which promotes the formation of Al2O(g) and Al(g) from Al2O3. These Al-based gases react with CN(g) and/or N2(g) to form AlN crystals on the Al2O3–ZrO2 plate.  相似文献   

9.
Al2O3/Ba-β-Al2O3/ZrO2 composites were fabricated by solid-state reaction sintering of Al2O3, BaZrO3, and yttria stabilized zirconia (YSZ) powders. The effects of YSZ addition on microstructure and mechanical properties have been investigated. The incorporation of YSZ promoted the densification of the composites and formation of tetragonal ZrO2 phase. The microstructure of the composites was characterized by elongated Ba-β-Al2O3 phase and equiaxed ZrO2 particles including added YSZ and reaction-formed ZrO2. The Al2O3/Ba-β-Al2O3/ZrO2 composites with YSZ addition exhibited improved fracture toughness, as a result of multiple toughening effects including crack deflection, crack bridging, crack branching, and martensitic transformation of ZrO2 formed by the reactions between Al2O3 and BaZrO3. Moreover, owing to the grain refinement of Al2O3 matrix, dispersion strengthening of the added YSZ particles, and an increase in density of the composites, the Vickers hardness and flexural strength of Al2O3/Ba-β-Al2O3/ZrO2 composites were dramatically enhanced in comparison with the composites without YSZ addition.  相似文献   

10.
This study investigated the removal of Cd2+, Cu2+, Ni2+, and Pb2+ from aqueous solutions using nanoparticle sorbents (TiO2, MgO, and Al2O3) with a range of experimental approaches. The maximum uptake values (sum of four metals) with multiple component solutions were 594.9, 114.6, and 49.4 mg g?1, for MgO, Al2O3, and TiO2, respectively. The sorption equilibrium isotherms were described using the Freundlich and Langmuir models. The best interpretation for experiment data was given by the Freundlich model for Cd2+, Cu2+, and Ni2+ in single- and multiple-component solutions. A first-order kinetic model adequately described the experimental data using MgO, Al2O3, and TiO2. SEM-EDX both before and after metal sorption and soil solution saturation indices (SI) in MgO nanoparticles indicated that the main sorption mechanism for heavy metals was attributable to adsorption and precipitation, whereas heavy metal sorption by TiO2 and Al2O3 adsorbents was due to adsorption. These nanoparticles may potentially be used as efficient sorbents for heavy metal removal from aqueous solutions. MgO nanoparticles were the most promising sorbents because of their high metal uptake.  相似文献   

11.
Conclusions The interaction between ZrO2, Al2O3, ZrSiO4, and 3Al2O3·2SiO2 with alkali silicate glasses of three compositions has been studied. It is shown that the greatest resistance to the effect of a molten glass is found in ZrO2 and Al2O3. Therefore, the most promising compositions in the ZrO2-Al2O3-SiO2 system are those which contain baddeleyite and corundum as the crystal phases with the minimum amount of silica.The most aggresive oxide in the composition of the glasses used in this experiment is K2O whose interaction with the refractory leads to the formation of low-melting compounds.The dissolution of corundum in the glass and the associated change in the properties of the glass have been studied. It is established that the dissolution of Al2O3 is the result of its interaction with the melt and the formation of low-melting compounds (alkali aluminosilicates of the feldspar type) while the emergence of a more viscous contact zone in the glass around the corundum grains lowers the rate of dissolution of Al2O3.Translated from Ogneupory, No. 2, pp. 50–53, February, 1980.  相似文献   

12.
Several compositions are investigated in order to determine the essence of the phase transformations occurring at temperatures up to 1600°C in the ZrO2 — Ln2O3 (Ln is Nd, Y, Yb) — Al2O3 — SiO2 (Fe2O3, TiO2) systems. The efficiency of using Y2O3 and Yb2O3 to stabilize cubic ZrO2 in the presence of a mixture of Al2O3 and SiO2 (Fe2O3, TiO2) is shown. Data show the possibility of fabricating high-quality zirconium-corundum articles with any proportion of Al2O3 and ZrO2.Translated from Ogneupory i Tekhnicheskaya Keramika, No. 6, pp. 17 – 20, June 1996.  相似文献   

13.
The effects of ZrO2 additions to Al2O3 were investigated to improve the evaporation rate of Al2O3 for bulk AlN crystal growth. The evaporation rate of Al2O3 increased concomitantly with increasing ZrO2 concentration under a nitrogen gas stream at 2223 K. The ZrO2 was predominantly nitrided. The nitridation of ZrO2 kept the local oxygen partial pressure high at the pellet surface, which suppressed the nitridation of Al2O3. The nitridation of ZrO2 caused the outward diffusion of ZrO2 (Zr4+ and O2?) in the pellet, which was accelerated further by the presence of Al2O3–ZrO2 liquid phase in grain boundaries, leading to the prompt formation of ZrN porous layer on the pellet surface. The suppressed nitridation of Al2O3 and the formation of porous ZrN layer were the reasons for the enhanced evaporation of Al2O3, leading to enhanced bulk AlN growth.  相似文献   

14.
In this study, microwave hybrid sintering and conventional sintering of Al2O3- and Al2O3/ZrO2-laminated structures fabricated via aqueous tape casting were investigated. A combination of process temperature control rings and thermocouples was used to measure the sample surface temperatures more accurately. Microwave hybrid sintering caused higher densification and resulted in higher hardness in Al2O3 and Al2O3/ZrO2 than in their conventionally sintered counterparts. The flexural strength of microwave-hybrid-sintered Al2O3/ZrO2 was 70.9% higher than that of the conventionally sintered composite, despite a lower sintering temperature. The fracture toughness of the microwave-hybrid-sintered Al2O3 increased remarkably by 107.8% despite a decrease in the relative density when only 3 wt.% t-ZrO2 was added. The fracture toughness of the microwave-hybrid-sintered Al2O3/ZrO2 was significantly higher (247.7%) than that of the conventionally sintered composite. A higher particle coordination and voids elimination due to the tape casting and the lamination processes, the microwave effect, the stress-induced martensitic phase transformation, and the grain refinement phenomenon are regarded as the main reasons for the mentioned outcomes.  相似文献   

15.
16.
V-containing catalysts supported on Al2O3, modified with varying amounts of ZrO2, were prepared by impregnation method. Dehydrogenation of ethylbenzene with CO2 was run over these catalysts in a fixed-bed downflow stainless steel reactor. Compared with pure Al2O3 support, a small amount of ZrO2 in the support led to a significant increase in catalytic activity. Partial reduction of vanadium oxides and carbon deposition were the main reasons for the decreased catalytic activity.  相似文献   

17.
Molten cast alumomagnesia refractory materials containing up to 28.3% MgO (MgAl2O4) are investigated. It is shown that materials with 10–15% MgO have a complex structure and phase composition. The latter can be interpreted as a solid solution of corundum and spinel or as a combination of MgO · 2.5Al2O3. The behavior of these materials in molten TK16 and K8 glass is investigated.  相似文献   

18.
Melt-grown Al2O3–ZrO2 eutectic (AZ eutectic) ceramics have attracted extensive attention for harsh environment applications. In this work, AZ eutectic ceramic is additively manufactured via one-step laser powder bed fusion (LPBF). The role of scanning speed on phase formation, crystallographic characteristics, microstructure evolution, and mechanical properties were systematically investigated. The as-fabricated specimens are mainly composed of α-Al2O3 and t-ZrO2. Lower scanning speeds induced the formation of cellular structures consisting of randomly oriented ZrO2. In contrast, nanometer eutectic lamellar structure with well-defined multiple crystallographic orientation relationships, for example, {10 1 ¯ ${\mathrm{\bar{1}}}$ 0} Al2O3 || {100} ZrO2 and {0001} Al2O3 || {001} ZrO2, occurred at higher scanning speeds. Both the cell size and lamellar spacing decreased with increasing scanning speed. With the microstructure refinement, the crack propagation mode changes from intergranular to transgranular fracture, leading to progressively enhanced fracture toughness with a maximum value of 7.76 MPa·m1/2. The present work could shed light on tailoring the microstructure of LPBF AZ eutectic ceramic via varying processing parameters.  相似文献   

19.
《Ceramics International》2021,47(18):25264-25273
In this study, the Al2O3/ZrO2 supersaturated solid solution powders with different ZrO2 contents were successfully synthesized by a novel combustion synthesis combined with water cooling (CS-WC) method. The solid solubility and formation mechanism of solid solution under the extremely non-equilibrium solidification condition were discussed in details. The ultra-high cooling rate greatly improves the solubility limit of Al2O3 in ZrO2. When ZrO2 content is 30 mol%, the Al2O3 has been almost dissolved into the ZrO2 lattice. The formation mechanism of solid solution can be attributed to solute interception caused by the huge degree of supercooling. During the sintering process, the solid solution powders precipitate ZrO2 particles and the Al2O3 matrix, which forms a fine and uniform nanostructure. Due to the synergistic effect of t-m phase transformation toughening and ZrO2 nanoparticles toughening, the Al2O3/ZrO2 nanoceramics exhibit excellent mechanical properties when ZrO2 contents are at the range of 25–37 mol%.  相似文献   

20.
《Ceramics International》2016,42(7):8079-8084
The directionally solidified Al2O3/MgAl2O4/ZrO2 ternary eutectic ceramic was prepared via induction heating zone melting. Smooth Al2O3/MgAl2O4/ZrO2 eutectic ceramic rods with diameters of 10 mm were successfully obtained. The results demonstrate that the eutectic rods consist of Al2O3, MgAl2O4 and ZrO2 phases. In the eutectic microstructure, the MgAl2O4 and Al2O3 phases form the matrix, the ZrO2 phase with a fibre or shuttle shape is embedded in the matrix, and a quasi-regular eutectic microstructure formed, presenting a typical in situ composite pattern. During the eutectic growth, the ZrO2 phase grew on non-faceted phases ahead of the matrix growing on the faceted phase. The hardness and fracture toughness of the eutectic ceramics reached 12 GPa and 6.1 MPa·m 1/2, respectively, i.e., two times and 1.7 times the values of the pre-sintered ceramic, respectively. In addition, the ZrO2 phase in the matrix reinforced the matrix, acting as crystal whiskers to reinforce the sintered ceramic.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号