首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Four different structure polyimide thin films based on 1,4‐phenylene diamine (PDA) and 4,4′‐oxydianiline (ODA) were synthesized by using two different dianhydrides, pyromellitic dianhydride (PMDA) and 3,3′,4,4′‐biphenyltetracarboxylic dianhydride (BPDA), and their residual stress behavior and mechanical properties were investigated by using a thin film stress analyzer and nanoindentation method. The residual stress behavior and mechanical properties were correlated to the morphological structure in polyimide films. The morphological structure of polyimide thin films was characterized by X‐ray diffraction patterns and refractive indices. The residual stress was in the range of ?5 to 38 MPa and increased in the following order: PMDA‐PDA < BPDA‐PDA < PMDA‐ODA < BPDA‐ODA. The hardness of the polyimide films increased in the following order: PMDA‐ODA < BPDA‐ODA < PMDA‐PDA < BPDA‐PDA. The PDA‐based polyimide films showed relatively lower residual stress and higher hardness than the corresponding ODA‐based polyimide films. The in‐plane orientation and molecularly ordered phase were enhanced with the increasing order as follows: PMDA‐ODA < BPDA‐ODA < BPDA‐PDA ~ PMDA‐PDA. The PDA‐based polyimides, having a rigid structure, showed relatively better‐developed morphological structure than the corresponding ODA‐based polyimides. The residual stress behavior and mechanical properties were correlated to the morphological structure in polyimide films. © 2009 Wiley Periodicals, Inc. J Appl Polym Sci, 2009  相似文献   

2.
《Polymer Composites》2017,38(11):2584-2593
A study on the dielectric behavior of polyimide composite films containing different amounts of TiO2 nanotubes (TNs) was performed. The films were prepared by casting solutions resulting from direct mixing of a poly(amic acid) and TNs onto glass plates, followed by thermal imidization. The influence of TNs content on the properties of polyimide composites was investigated. AFM and SEM analyses showed good compatibility between the filler and polymer matrix. Dynamic mechanical analysis and broadband dielectric spectroscopy were used to evidence relaxation processes into the films. The electrical properties were evaluated on the basis of dielectric constant and dielectric loss, and their variation with frequency and temperature. At moderate temperature a secondary β relaxation was observed while incorporation of TNs decreased the activation energy and facilitated the appearance of an additional β 1 process. An α relaxation and a conductivity process were evidenced at higher temperatures. The values of dielectric constant and dissipation factor increased with TNs amount, and the maximum of σ relaxation peak shifted to higher temperatures. POLYM. COMPOS., 38:2584–2593, 2017. © 2015 Society of Plastics Engineers  相似文献   

3.
联苯四羧酸二酐(BPDA)与4,4′-二氨基二苯醚(ODA)及自制的2,6-二(对氨基苯)苯并[1,2-d;5,4-d']二噁唑(DAPBBO)在二甲基乙酰胺中共聚,然后进行铺膜和热酰亚胺化,得到了含有双苯并噁唑的共聚酰亚胺薄膜,对其结构、热性能、力学性能及光学性能进行了表征。结果表明:杂环单体的引入提高了聚酰亚胺的力学性能,增加了聚酰亚胺的玻璃化转变温度,并且使聚酰亚胺薄膜具有良好的紫外吸收能力。  相似文献   

4.
In this research, a series of porous copolyimide (co‐PI) films containing trifluoromethyl group (CF3) were facilely prepared via a phase separation process. The co‐PI were synthesized by the reaction of benzophenone‐3,3′,4,4′‐tetracarboxylic dianhydride (BTDA) with two diamines of 4,4′‐diaminodiphenyl ether (ODA) and 3‐trifluoromethyl‐4,4'‐diaminodiphenyl ether (FODA) with various molar ratios. The flexible and tough porous co‐PI films with about 300 μm thickness and 8~10 μm average diameter could be obtained by solution casting conveniently. The thermal properties of the obtained porous co‐PI films were excellent with a glass transition temperature at 270 °C ~ 280 °C and only 5% weight loss in temperature from 530 °C to 560 °C under nitrogen atmosphere. In addition, the dielectric and hydrophobic properties of porous co‐PI films were remarkably improved owing to the presence of trifluoromethyl groups (CF3) in the polymer chains. Moreover, our synthesized porous co‐PI films also showed good mechanical properties. © 2016 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2017 , 134, 44494.  相似文献   

5.
Magnetic properties of metal layer deposited by reduction of polymer containing metal ions were investigated. Varying the ratio of the cobalt ion to the nickel ion in the polymer, the coercivity, the maximum flux density and the remanent flux density of the deposited metal layer were changed from 100 to 600 Oe, from 1 000 to 12 600 G and from 500 to 7 600 G, respectively. The X-ray diffraction pattern of the metal layer with excellent magnetic properties gives distinct peaks corresponding to the (101) and (100) planes of the crystal of α-Co. This suggests that such a deposited metal layer has the structure of highly crystalline metal layer.  相似文献   

6.
A series of hyperbranched polysiloxane (HBPSi)-based hyperbranched polyimide (HBPI) films with low dielectric permittivity and multiple branched structures are fabricated by copolymerizing 2,4,6-triaminopyrimidine (TAP) with 4,4′-(hexafluoroisopropylidene)diphthalic anhydride, 4,4′-diaminodiphenyl ether, and HBPSi via the two-step polymerization method. The dielectric permittivity of HBPSi hyperbranched polyimide films decreases with increasing TAP fraction, namely, from 3.28 for sample PI-1 to 2.80 for PI-4, mainly owing to the enlarged free volume created by the incorporation of multiple branched structures. Moreover, HBPSi HBPI possesses desirable solubility and good mechanical properties and thermal stability. PI-4 not only has low dielectric permittivity (2.80, 1 MHz), excellent solubility (soluble in several common organic solvents), and remarkable thermal properties (glass-transition temperature of 273 °C, 5% weight loss temperature of 498 °C in N2 and 486 °C in O2), but it also demonstrates admirable mechanical properties with a tensile strength of 103 MPa, elongation at break of 7.3%, and a tensile modulus of 2.16 GPa. HBPSi HBPI might have potential applications in interlayer dielectrics and other microelectronics fields. © 2019 Wiley Periodicals, Inc. J. Appl. Polym. Sci. 2019 , 136, 47771.  相似文献   

7.
Polyimide composite films were prepared by mixing the BaTiO3 particles into poly(amic acid) solution followed by film casting and thermal imidization under controlled temperature conditions. The poly(amic acid) was synthesized by solution polycondensation reaction of 4,4′‐oxydiphthalic anhydride with 2,6‐bis(4‐aminophenoxy)benzonitrile, using N‐methyl‐2‐pyrrolidone as solvent. The surface of BaTiO3 particles was modified by treating with an aminosilane coupling agent, 3‐aminopropyltriethoxysilane. Fourier transform infrared spectroscopy, X‐ray diffraction and scanning electron microscopy were used to characterize the structure and properties of the composites. The influence of BaTiO3 content on the composite film properties was evidenced. The films exhibited good thermal stability having the initial decomposition temperature above 520°C. They had stable dielectric properties over large intervals of temperature and frequency. The dielectric constant and the dielectric loss increased with the increase of BaTiO3 content. The dynamic mechanical analysis and dielectric spectroscopy revealed subglass transitions γ and β. At higher temperature an α‐relaxation that corresponds to the glass transition and a conductivity process were evidenced. POLYM. COMPOS., 2011. © 2011 Society of Plastics Engineers  相似文献   

8.
In order to meet the requirements of highly integrated and miniaturized electronic components, there is an urgent need for low dielectric materials with high mechanical properties and optical transparency in the field of microelectronics. In this study, a series of novel polyimide films (FPI) containing fluorenyl were prepared, and the effects of the fluorenyl content on the thermal, mechanical, and dielectric properties of the copolymerized films were investigated and discussed. The results demonstrate a significant decrease in the dielectric constant of the FPI films following the introduction of fluorenyl into polyimide (PI) chain segment. The FPI films also exhibited high mechanical properties, including tensile strengths between 92 and 106 MPa and elongation at break in the range of 8.4%–13.0%. Additionally, the introduction of the noncoplanar fluorenyl considerably improved the optical transparency and solubility of the FPI film. It is noteworthy that the FPI-3 has the best dielectric properties, with a low dielectric constant of 2.61 at 10 MHz and shows low water absorption (0.49%). The results show that we have prepared a novel low dielectric PI material film with excellent mechanical properties and optical transparency by introducing fluorenyl into the PI chain segment. These FPI films with satisfactory properties may be good candidates for dielectric materials for electronic components.  相似文献   

9.
Capacitors with an Al–polyimide–Al sandwich film structure have been fabricated: the top and the bottom aluminium electrodes were deposited by vacuum evaporation and the polyimide film was deposited by an isothermal immersion method. An X‐ray diffractogram of the film indicates the amorphous nature of the polyimide film. Dielectric and ac conduction properties of polyimide capacitors in the frequency range 10 kHz to 10 MHz at various temperatures (303–423 K) are reported; the dc conduction at different voltages and at various temperatures (303–423 K) is given. The capacitance of the film decreases with increasing frequency but increases with increasing temperature. The ac conduction studies suggest that electron hopping is responsible for conduction while the dc conduction studies reveal that Poole–Frenkel conduction is predominant at high fields. The activation and zero field activation energies are also calculated. © 2001 Society of Chemical Industry  相似文献   

10.
以2,2′-双[3-苯基-4(4-氨基苯氧基)苯基]丙烷(BPAPOPP)、4,4′-二胺基二苯醚和均苯四甲酸酐为原料,采用两步法共缩聚制备了一系列共聚聚酰亚胺薄膜.采用红外光谱仪、差示扫描量热仪等分析了薄膜的结构,利用静态热机械分析仪分析了薄膜的性能.结果表明:制备的聚酰亚胺薄膜具有较低的玻璃化转变温度;随着BPAP...  相似文献   

11.
A novel diamine monomer 4-amino-N-(4-amino-phenyl)-benzamide (DABA) containing amide group was introduced to modify the polyimide of pyromellitic dianhydride (PMDA) and 4, 4′-oxydianiline (ODA) by copolymerization. A series of homo- and co-polyamic acid were synthesized by DABA and ODA in different molar ratio with PMDA, and polyimide films were obtained by thermal imidization. The films were characterized by tensile testing, dynamic mechanical analysis (DMA), thermal gravimetry analysis (TGA), fourier transform infrared (FTIR) and wide x-ray diffraction (WAXD). All of the obtained polyimide films show excellent mechanical properties and thermal stability. With the content of DABA increasing from 0% to 100%, the tensile strength and initial modulus are highly improved from 124.72 MPa and 4.70 GPa to 286.46 MPa and 22.06 GPa respectively. The polyimides have 5% weight loss temperature in the range of 530.0–555.5 °C. The glass transition temperatures are in the range of 387.90–409.16 °C and the tanδ values decrease from 0.3721 to 0.08316. The results of WAXD and FTIR indicate that the introduction of DABA containing amide group can improve the order degree of macromolecule and form hydrogen bonds between the main chains, which results in the improvement of mechanical properties.  相似文献   

12.
13.
In this study, a series of PI/TiO2 nanohybrid materials were prepared from polyamic acid of 3,3′,4,4′-benzophenonetetracarboxylic dianhydride/3,3′-diaminodiphenyl sulfone, and titania precursor by the sol-gel method. The titania content in the hybrid system was varied from 0 to 5 wt %. The physical and mechanical properties of the hybrids such as refractive index, optical transmission, and tensile strength were investigated. It was determined that incorporation of titania precursor into the PI matrix improved the refractive indices and tensile modulus of the hybrid films. It was observed that the optical transmittance and tensile strength of the nanohybrids were slightly decreased with the increasing titania content. It was determined that the hybrid films might have enhanced the UV shielding properties compare to the PI films. Furhermore, the hybrid materials showed better thermal stability than the PI. SEM studies demonstrated that titania particles (1 and 3 wt %) were distributed homogeneously through the PI matrix. The effect of the titania content in the PI on DC conductivity and dielectric constant were also analyzed. For the PI film containing 5 wt % titania, activation energy value increased to 1.0 eV from the value of 0.65 eV. DC conductivity value of the films depending on titania content varied between 3.0 × 10−11 and 1.4 × 10−10 S/cm at room temperature. Relative dielectric constants of the films were calculated from capacitance measurements depending on frequency (40–100 kHz) at different temperatures (303–360 K). The values increased with the increasing titania content. © 2012 Wiley Periodicals, Inc. J Appl Polym Sci, 2012  相似文献   

14.
A series of polyimide (PI)/silica hybrid films were prepared by sol–gel method, using hydrolyzed tetraethoxysilane and poly amic acid‐imides (PAA‐Is), which were different imidization degree controlled by chemical imidization method. The imidization degree was characterized by Fourier transform infrared spectra and their corresponding morphology was characterized by scanning electron microscopy. The results show that there are two kinds of silica particles and their formative morphology obeys the double phase separation mechanism. According to the increase of PAA‐I imidization degree, amount of nano silica particles decreased and the diameter of macro silica particles increased in the hybrid films. Tensile testing, dynamic mechanical analysis, and thermal mechanical analysis results show that, according to the amount of nano silica particles increasing, the hybrids have the higher the mechanical properties, glass transition temperature (Tg), and thermal expansion coefficient. Through controlling PI/silica hybrid films microstructure, its mechanical properties can be controlled. © 2010 Wiley Periodicals, Inc. J Appl Polym Sci, 2010  相似文献   

15.
A series of ZnS/polyimide (PI) nanocomposite films with different ZnS contents have been successfully fabricated by incorporating ZnS nanoparticles with a diameter of 2–5 nm into polyamic acid, followed by a stepwise thermal imidization process. X‐ray photoelectron spectroscopy results confirm the successful introduction of ZnS particles into PI matrix. Transmission electron microscopy images show that the ZnS nanoparticles were uniformly dispersed in the polymer matrix without aggregation. The incorporation of ZnS nanoparticles can improve the mechanical properties and the glass transition temperature of nanocomposites, while the thermal degradation temperature of nanocomposites decreases with increasing ZnS content. Copyright © 2006 Society of Chemical Industry Society of Chemical Industry  相似文献   

16.
聚酰亚胺在工程高分子材料领域广受关注,开发新型耐高温、疏水性良好的聚酰亚胺薄膜材料是推动高性能高分子材料在电动汽车等高新技术领域工程化应用的重要突破口。本工作采用两步法合成复合型聚酰亚胺薄膜,通过纳米ZrO2粉体对聚酰亚胺薄膜进行改性,借助XRD、SEM、能谱、红外光谱等手段对复合薄膜进行结构和形貌的表征,并测试了复合薄膜的热稳定性、疏水性及抗拉强度,结果表明纳米ZrO2的加入增强了聚酰亚胺分子链之间的相互作用,使其耐热性能得到显著提高,分解温度可以提高20 ℃,复合薄膜的水接触角提高60%,疏水性能得到提高。本工作为开发新型高性能聚酰亚胺高分子材料提供了新的思路。  相似文献   

17.
聚酰亚胺(PI)在工程高分子材料领域广受关注,开发新型耐高温、疏水性良好的PI薄膜材料是推动高性能高分子材料在电动汽车等高新技术领域工程化应用的重要突破口。以间苯二胺(MPD)与4,4’-(4,4’-异丙基二苯氧基)二酞酸酐(BPADA)为原料,采用原位掺杂热亚胺化合成PI薄膜,通过向聚酰胺酸(PAA)前驱液中添加纳米ZrO2粉体对聚酰亚胺薄膜进行改性,制得不同ZrO2添加量(0.77%~1.93%,以MPD、BPADA总质量为基准,下同)的复合型PI薄膜。借助XRD、SEM、EDS、FTIR及TGA对复合薄膜进行了结构和形貌表征。结果表明,与纯PI相比,ZrO2添加量为1.93%的复合薄膜初始分解温度为415℃(提高5%),水接触角为91.7°(提高61%),表明ZrO2对改善PI薄膜的性能具有重要作用。  相似文献   

18.
To attain thermally conductive but electrically insulating polymer films, in this study, polyimide (PI) nanocomposite films with 1–30 wt% functionalized hexagonal boron nitride nanosheets (BNNSs) were fabricated via solution casting and following imidization. The microstructures, mechanical and thermal conductive properties of PI/BNNS nanocomposite films were examined by taking account of the relative content, anisotropic orientation, and interfacial interaction of BNNS and PI matrix. The scanning electron microscopy, X-ray photoelectron spectroscopy, Fourier transform infrared spectroscopy, and X-ray diffractometry data revealed that BNNSs with hydroxy and amino functional groups have specific molecular interactions with PI matrix and they form stacked aggregates in the nanocomposite films with high BNNS loadings of 10–30 wt%. The tensile mechanical strength/modulus, thermal degradation temperatures, and thermal conductivity of the nanocomposite films were found to be significantly enhanced with increasing the BNNS loadings. For the nanocomposite films with 1–30 wt% BNNS loadings, the in-plane thermal conductivity was measured to be 1.82–2.38 W/mK, which were much higher than the out-of-plane values of 0.35–1.14 W/mK. The significant anisotropic thermal conductivity of the nanocomposite films was found to be owing to the synergistic anisotropic orientation effects of both BNNS and PI matrix. It is noticeable that the in-plane and out-of-plane thermal conductivity values of the nanocomposite film with 30 wt% BNNS were ~1.31 and ~3.35 times higher than those of neat PI film, respectively.  相似文献   

19.
不同金属离子掺杂TiO2薄膜的制备及光催化活性的研究   总被引:8,自引:0,他引:8  
以溶胶-凝胶法制备了分别用Ag+、Cu2+、Fe3+、La3+、Ce3+和Eu3+等离子掺杂的纳米TiO2薄膜,经XRD和UV-Vis对薄膜样品进行表征并研究了其光催化活性。XRD结果证明,掺镧TiO2薄膜与未掺杂薄膜的X射线衍射图基本一致,实验条件下主要为锐钛矿型,且掺入La3+离子使得TiO2薄膜的晶粒变小。UV-Vis吸收光谱说明当λ>380 nm时,其吸光度低于0.15。薄膜光催化降解亚甲基蓝的实验表明,La3+或Fe3+掺杂薄膜的光催化降解率远高于未掺杂TiO2薄膜,而Ce3+或Cu2+离子掺杂薄膜与未掺杂薄膜的光催化活性相似,掺Ag+或Eu3+离子则降低了活性。当最佳掺杂量La3+为0.6%或Fe3+为1.5%时,光催化降解率分别高达92%和82%。  相似文献   

20.
Spinnable carbon nanotube (CNT) arrays with different CNT structures have been synthesized using different growth methods and carbon sources, and long and stable fibers have been produced. Parameters of the nanotubes such as tube diameter, wall thickness, tube length and level of defects were found to play a more important role in the mechanical properties of the fibers than did the initial tube arrangement. To improve the fiber strength, as well as the modulus, the tubes must be long and have a small diameter and thin walls. The strongest fiber from double- and triple-walled CNTs is 1.23 GPa in strength, and 32% and 221% higher than those from CNTs with ∼6 and ∼15 walls (932 and 383 MPa), respectively. The fiber strength can be improved by 25%, up to 1.54 GPa, after poly(vinyl alcohol) infiltration with volume fraction of ∼20%. Our study also shows that C2H4 is superior to C2H2 as the carbon source for the growth of mainly double- and triple-walled CNTs, and therefore the spinning of high-strength fibers.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号