首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
Interfacial reactions of Y and Er thin films on both (111)Si and (001)Si have been studied by transmission electron microscopy (TEM). Epitaxial rare-earth (RE) silicide films were grown on (111)Si. Planar defects, identified to be stacking faults on planes with 1/6 displacement vectors, were formed as a result of the coalescence of epitaxial silicide islands. Double-domain epitaxy was found to form in RE silicides on (001)Si samples resulting from a large lattice mismatch along one direction and symmetry conditions at the silicide/(001)Si interfaces. The orientation relationships are [0001]RESi2−x// Si, RESi2−x//(001)Si and [0001]RESi2−x/ Si, RESi2−x//(001)Si. The density of staking faults in (111) samples and the domain size in (001) samples were found to decrease and increase with annealing temperature, respectively.  相似文献   

2.
Orientation dependent etching of photolithographically patterned GaP was investigated using solutions of HCl:CH3COOH:H2O2. The pattern was prepared using standard ultraviolet lithography and was a two-dimensional grid with an 18 μm repeat, consisting of 15 μm squares separated by 3 μm spaces. The mask sides were aligned along the and directions. Under appropriate etching conditions, high quality arrays of pyramids were prepared. These pyramids were defined by , and facets. It was shown that the etching process depended on the degree of solution aging after initial mixing. For a freshly prepared solution, the etching rate showed an inverse dependence on time. For short etching times (below 5 min), an intermediate etching profile was followed, while for long times (greater than 5 min) etching was kinetically controlled. We demonstrated that controlled etching at extremely low rates (0.1–0.5 μm/min) is feasible with this new approach.  相似文献   

3.
High-resolution x-ray diffraction (XRD) and atomic force microscopy (AFM) of pendeo-epitaxial (PE) GaN films confirmed transmission electron microscopy (TEM) results regarding the reduction in dislocations in the wings. Wing tilt ≤0.15° was due to tensile stresses in the stripes induced by thermal expansion mismatch between the GaN and the SiC substrate. A strong D°X peak at ≈3.466 eV (full-width half-maximum (FWHM) ≤300 μeV) was measured in the wing material. Films grown at 1020°C exhibited similar vertical [0001] and lateral [11 0] growth rates. Increasing the temperature increased the latter due to the higher thermal stability of the GaN(11 0). The (11 0) surface was atomically smooth under all growth conditions with a root mean square (RMS)=0.17 nm.  相似文献   

4.
To investigate the potential benefits of compositional grading for dislocation control in CdTe/Si growth, Cd1−xZnxTe buffer layers with x graded smoothly from 1 to 0 have been deposited on Si (211) surfaces. Growth has been characterized using reflection high-energy electron diffraction (RHEED), x-ray diffraction (XRD), and etch pit density measurements. XRD showed an increase in rocking curve full-width at half-maximum (FWHM) and global lattice tilt with decreasing x values. Tilt was also observed to increase as buffer growth temperature was increased. Final surface dislocation densities did not decrease below 7×106 cm−2. EPD surface dislocation measurements showed reduced dislocation densities and dislocation clustering along the and lines for CdTe cap layers grown on partially graded Cd1−xZnxTe buffer layers with slow compositional grading rates. Samples grown with faster grading rates showed higher final EPD values, with dislocations clustering along the and lines.  相似文献   

5.
The effect of off-orientation growth has been investigated in terms of stacking fault formation during physical vapor transport (PVT) growth of silicon carbide (SiC) single crystals on the (11 0) seed crystal surface. Occurrence of stacking fault formation is largely dependent on the direction of off-orientation, and basal plane stacking fault density is significantly reduced by growing the crystals on a (11 0) seed crystal off-oriented toward 〈0001〉. The density of the basal plane stacking faults rapidly decreases from 100–150 cm−1 to ∼10 cm−1 as the degree of off-orientation is increased from 0 to 10 deg. The results are interpreted in the framework of microscopic facet formation during PVT growth, and the introduction of off-orientation of seed crystal is assumed to prevent (01 0) and (10 0) microfacet formation on the (11 0) growing surface through modification of the surface growth kinetics and to suppress the stacking fault formation. An erratum to this article is available at .  相似文献   

6.
Transmission electron microscopy (TEM) and KOH etching have been used to study the dislocation structure of 4H SiC wafers grown by physical vapor transport. A new type of threading dislocation arrays was observed. Rows of etch pits corresponding to dislocation arrays were observed in vicinity of micropipes, misoriented grains and polytypic inclusions at the periphery of the boules and extended along the directions. Plan view conventional and high resolution TEM showed that the arrays consisted of dislocations threading along the c-axis with Burgers vectors having edge components of the a/3 type. The Burgers vectors were parallel to the corresponding arrays. The dislocation arrays were interpreted as slip bands formed by dislocation glide in the prismatic slip system of hexagonal SiC during post-growth cooling.  相似文献   

7.
Transmission electron microscopy (TEM), atomic force microscopy (AFM), and photoluminescence (PL) spectroscopy were used in order to study the microstructure and optical properties of GaN films grown by metal-organic chemical vapor deposition (MOCVD) on c-plane sapphire by lateral confined epitaxy (LCE). In this method, the substrate is etched prior to growth to form uniform mesas separated by trenches for laterally restricting growth area. As previously observed for LCE GaN on Si(111), the density of threading dislocations was significantly reduced in the areas close to the edge of mesas due to the lateral propagation of the dislocations. Hence, the overall material quality improves with decreasing mesa size, which is consistent with the observed increase in photoluminescence band edge peak intensity. Electron diffraction indicated ∼1° rotation about the [ ] axis between the mesa and trench material, which was also observed in the image contrast of these two regions with g= . Additionally, LCE samples prepared in [ ] and [ ] cross sections were used for comparing the growth rates in these two perpendicular directions. As theoretically expected, growth in the [ ] direction appears to proceed considerably faster than that in the [% MathType!MTEF!2!1!+-% feaafiart1ev1aaatCvAUfeBSjuyZL2yd9gzLbvyNv2CaerbuLwBLn% hiov2DGi1BTfMBaeXatLxBI9gBaerbd9wDYLwzYbItLDharqqtubsr% 4rNCHbGeaGqiVu0Je9qqqrpepC0xbbL8F4rqqrFfpeea0xe9Lq-Jc9% vqaqpepm0xbba9pwe9Q8fs0-yqaqpepae9pg0FirpepeKkFr0xfr-x% fr-xb9adbaqaaeGaciGaaiaabeqaamaabaabaaGcbaGaaGymaiaaig% daceaIYaGbaebacaaIWaaaaa!38D1!\[11\bar 20\]] direction.  相似文献   

8.
We have determined the shape of InAs quantum dots using reflection high energy electron diffraction. Our results indicate that self-assembled InAs islands possess a pyramidal shape with {136} bounding facets. This shape is characterized by C2v symmetry and a parallelogram base, which is elongated along the direction. Cross-sectional transmission electron microscopy images taken along the [110] and directions as well as atomic force microscopy images strongly support the {136} shape. Furthermore, polarization-resolved photoluminescence spectra show strong in-plane anisotropy, with emission predominantly polarized along the direction, consistent with the proposed quantum dot shape.  相似文献   

9.
Organometallic vapor phase epitaxial growth of GaAs on 320 nm high mesas was used to study the dependence of lateral growth upon the substrate misorientation from (100) and the mesa wall orientation on the substrate. GaAs (100) substrates were misoriented by 3° toward eight major crystallographic directions, consisting of the four nearest [111] and [110] directions. The mesa sidewalls were oriented either parallel to the 〈011〉 and 〈01 〉 directions or rotated by 45° to be parallel to the 〈001〉 and 〈010〉 directions. GaAs films were grown with TMGa and TBA at T=575°C. The lateral growth rates were up to 25 times higher than the vertical growth rate of 1.3 μm/hour. Optical microscopy and atomic force microscopy (AFM) showed that under the given growth conditions lateral growth off mesa sidewalls is most rapid in the 〈011〉 and/or 〈0 〉 directions and less in the perpendicular 〈01 〉 and 〈0 1〉 directions (lateral growth anisotropy). By raising the temperature to 625°C lateral growth in the 〈01 〉 -〈0 1〉 directions increased while it remained almost constant in the 〈011〉 -〈0 〉 directions. Published results show that the partial pressure of As also affects lateral growth. Differences in the lateral growth rates in the 〈011〉 and its opposite 〈0 〉 directions result from substrate misorientation but not from the orientation of the mesa walls on the substrate. Anisotropic lateral growth rates in different crystallographic directions appear to be caused by both, (1) 1-dimensional Ga diffusion defined by surface reconstruction, and (2) a relatively low energy barrier to atoms flowing over high-to-low terrace steps. A lateral growth model is proposed that describes anisotropic lateral growth at mesa sidewalls in terms of growth conditions and substrate misorientations. The model also explains the difference in the preferential lateral growth directions between MBE and OMVPE.  相似文献   

10.
The polarization of the photoluminescence (PL) of self-assembled CdSe quantum dots (QDs), grown by metalorganic chemical vapor phase deposition, was measured. From the (001) surface, the PL was found preferentially polarized in the direction, while from the cleaved surface in the [001] direction. The polarization of PL depends strongly on the ZnSe capping layer thickness and the PL energy. With an increase in ZnSe coverage, the intensity ratio was found to increase first, then decrease after the coverage is thicker than a critical value. Moreover, such a critical thickness is smaller for larger QDs (lower PL energies). Possible origins of the PL polarization are discussed. We suggest that besides the quantum confinement effects, the strain field in the QDs also plays an essential role in the observed polarization of PL.  相似文献   

11.
The effect of substrate misorientation on phase separation in Ga1−xInxAsySb1−y nominally lattice matched to GaSb is reported. The layers were grown at 575°C by organometallic vapor phase epitaxy on vicinal (001) GaSb substrates, miscut or (101). Ga1−xInxAsySb1−y (x ~ 0.1, ~ 0.09) layers, which have 300-K photoluminescence (PL) peak emission at ~2.1 μm, grow stepbunched and exhibit minimal phase separation. The full width at half maximum of 4-K PL spectra is slightly smaller at 7 meV for layers grown on substrates miscut toward compared to 9 meV for layers grown on substrates miscut toward and (101). Ga1−xInxAsySb1−y layers with higher alloy composition (0.16≤x≤0.19, 0.14≤y≤0.17), which have 300-K PL peak emission at ~2.4 μm, have significant phase separation. These layers are characterized by increased lattice constant variations and epitaxial tilt, broad PL spectra with significant band tailing, and strong contrast modulation in transmission electron microscopy. The degree of decomposition depends on substrate miscut direction: Ga1−xInxAsySb1−y layers grown on (001) substrates are more homogeneous than those grown on (001) and (001)2°→(101) substrates. The results are attributed to the smaller adatom diffusion length on substrates miscut toward .  相似文献   

12.
Icosahedral boron arsenide (B12As2) thin films were deposited on 6H-SiC substrates by chemical vapor deposition using B2H6 and AsH3 sources. X-ray diffraction analysis of the thin films showed them to have the rhombohedral crystal structure and lattice parameters of B12As2. Transmission electron microscopy showed that the films were polycrystalline with oriented crystal grains. The preferential orientation of the film with respect to the SiC substrate was determined to be: [0001]B12As 2//[0001]6H-SiC and [ ]B12As 2//[ ]6H-SiC to within 3°. Electron diffraction also revealed the extremely small lattice mismatch (<0.5%) between the B12As2 basal-plane lattice parameter and twice the SiC basal-plane lattice parameter.  相似文献   

13.
14.
Creep behavior of eutectic Sn-Cu lead-free solder alloy   总被引:3,自引:0,他引:3  
Tensile creep behavior of precipitation-strengthened, tin-based eutectic Sn-0.7Cu alloy was investigated at three temperatures ranging from 303–393 K. The steady-state creep rates cover six orders of magnitude (10−3−10−8 s−1) under the stress range of σ/E=10−4−10−3. The initial microstructure reveals that the intermetallic compound Cu6Sn5 is finely dispersed in the matrix of β-Sn. By incorporating a threshold stress, σ th, into the analysis, the creep data of eutectic Sn-Cu at all temperatures can be fitted by a single straight line with a slope of 7 after normalizing the steady-state creep rate and the effective stress, indicating that the creep rates are controlled by the dislocation-pipe diffusion in the tin matrix. So the steady-state creep rate, , can be expressed as exp , where Qc is the activation energy for creep, G is the temperature-dependent shear modulus, b is the Burgers vector, R is the universal gas constant, T is the temperature, σ is the applied stress, A is a material-dependent constant, and , in which σ OB is the Orowan bowing stress, and kR is the relaxation factor. An erratum to this article is available at .  相似文献   

15.
CdTe B was grown on As-terminated Si(111) by molecular beam epitaxy (MBE). Nucleation and interface properties were studied by photoelectron spectroscopy, scanning tunneling microscopy, electron diffraction, and energy-dispersive spectroscopy of x-rays. Selective growth on Si(111) was investigated either by using SiO2 as a mask, or by growing on a patterned CdTe seed layer. The highest temperature where CdTe nucleates on As-terminated Si(111) surfaces is typically in the range of 220–250°C. On a SiO2 mask, CdTe nucleates at the same temperatures, leading to polycrystalline growth. However, homoepitaxy of CdTe is possible around 300°C. Hence, CdTe can be grown selectively on a patterned CdTe seed layer on Si(111). This is confirmed by scanning electron microscopy and scanning Auger microscopy.  相似文献   

16.
The bias-enhanced nucleation (BEN) technique in hot-filament chemical vapor deposition (HF-CVD) has been applied to single crystalline 6H-SiC substrates for the deposition of oriented diamond. The results of scanning electron microscopy (SEM) showed that on (000 ) face not only oriented diamond with relationship (111) Dia.//(000 )6H-SiC and 〈110〉Dia.//(11 0)6H-SiC, but also high nucleation density (>109 cm−2) have been achieved. In the case of deposition on (0001) face of 6H-SiC under the same experimental conditions, although the nucleation density of diamond was enhanced, however, oriented diamond was not found. Diamond nucleation density is higher on (0001) face than that on (000 ) face. The differences in diamond oriented nucleation and nucleation density on these two faces are attributed to the difference of their specific free surface energy. The experimental results have shown that the 6H-SiC substrate surfaces are etched by the accelerated H-ions during BEN process, and many micro-triangular crystals with the faces of the kind {01 4} are formed on the substrate surface. Diamonds nucleate on the top of the micro-triangular crystals. Micro-Raman spectrum shows a strong feature of diamond crystals at 1334 cm−1.  相似文献   

17.
18.
Lateral epitaxial growth and coalescence of GaN regions over SiO2 masks previously deposited on GaN/AlN/6H-SiC(0001) substrates and containing 3 μm wide rectangular windows spaced 7 μm apart have been achieved. The extent and microstructural characteristics of these regions of lateral overgrowth were a complex function of stripe orientation, growth temperature, and triethylgallium (TEG) flow rate. The most successful growths were obtained from stripes oriented along 〈1 00〉 at 1100°C and a TEG flow rate of 26 μmol/min. A density of ∼109 cm−2 threading dislocations, originating from the underlying GaN/AlN interface, were contained in the GaN grown in the window regions. The overgrowth regions, by contrast, contained a very low density of dislocations. The surfaces of the coalesced layers had a terrace structure and an average root mean square roughness of 0.26 nm.  相似文献   

19.
Influence of arsenic on the atomic structure of the Si(112) surface   总被引:2,自引:0,他引:2  
The surface science techniques of low-energy electron diffraction (LEED), x-ray photoelectron spectroscopy (XPS), and scanning tunneling microscopy (STM) have been used to characterize the clean Si(112) surface and the influence of an As monolayer on the properties and structure of the surface. In agreement with previous studies, the clean surface is found by both LEEd and atomically resolved STM images to be unstable with respect to faceting into other stable planes. Procedures for in-situ deposition of As onto clean Si surfaces were devised and XPS results show that approximately one monolayer of As can be deposited free of any contamination. The As/Si(112) surface is characterized by a sharper LEED pattern than for the clean surface and by STM images characterized by long rows along the direction with a regular width of 1.9 nm. This is consistent with a doubling of the periodicity in the direction of the bulk-terminated unit cell. This implies that As yields a stable but reconstructed Si(112) surface.  相似文献   

20.
Epitaxial Ni0.80Fe0.20/NixCo1−xO bilayers have been grown on α-Al2O3 (0001) substrates by dc-sputtering X-ray diffraction and transmission electron microscopy have been employed to characterize these exchange-coupled films. The x-ray diffraction spectrum shows only the (111) family of peaks in both Ni0.80Fe0.20 and NixCO1−xO films. Growth orientation relationships have been determined from diffraction patterns taken in planar view and cross section. The relationships are: (111) Ni0.80Fe0.20//(111) NixCo1−xO//(0001) α−Al2O3 and [1 0]Ni0.80FE0.20//[1 0]NixCo1-xO//[1 00] α-Al2O3. The microstructure of these films as well as the interfacial structure between Ni0.80Fe0.20 and NixCo1−xO have been analyzed in high resolution electron microscopy and are described in this paper. In addition, the dependence of the exchange coupling field on interfacial roughness is discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号