首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 562 毫秒
1.
《Ceramics International》2016,42(15):17074-17080
The effects of Fe and SiC additions on the densification, microstructure, and ablation properties of ZrB2-based ceramics were investigated in this study. The sample powders were conventionally mixed by cemented carbide ball then sintered by spark plasma sintering. The ablation rates and behavior of the ceramics were investigated under an oxyacetylene torch environment at about 3000 °C. A sample with high relative density (96.3%), high flexural strength (415.6 MPa), and low linear ablation rate (−0.4 µm/s) was obtained via SPS at 1600 °C. Adding 4 vol% Fe was more beneficial to the density of ZrB2 sintered at 1600 °C as compared to ZrB2 sintered at 1800 °C. The ablation behavior and rates were similar among samples sintered at 1600 °C and 1800 °C.  相似文献   

2.
The effect of sintering processes, such as open sintering, sintering inside a closed crucible, and sintering within a powder bed, on the microstructure and VI characteristics of ZnO–Bi2O3-based varistor ceramics was investigated at sintering temperatures in the range 1000–1200 °C. The results from the experiments showed that the microstructure and electrical properties of the samples varied according to the sintering method and temperature. Optimal values for the electrical characteristics of the varistor ceramics by different sintering processes were obtained when the sintering was conducted at 1100 °C. At the same sintering temperature, the different processes affected the properties differently. At 1000 °C, the samples sintered within a powdered bed showed better electrical properties than those subjected to the other two processes, while at 1100 or 1200 °C, the samples sintered in an open crucible exhibited the best electrical properties.  相似文献   

3.
Low temperature sintering of PZT powders was investigated using Pb5Ge3O11(PGO) as a sintering aid. PZT powders with 150 nm particle size were coated with PGO which was prepared from precursor solutions of Ge(OiPr)4 and Pb(NO3)2 by sol–gel method. 1 wt% PGO-added PZT powders were densified at 750°C for 2 h to sintered bodies with the relative density of approximately 95%. An addition of PGO improved the sinterability of PZT powders with a reduction of sintering temperature by about 300°C. Dielectric and piezoelectric properties of PGO-added PZT ceramics sintered at ≦950°C were superior to those without PGO additives. However, a higher sintering temperature above 1000°C deteriorated the dielectric and piezoelectric properties of PGO-added PZT ceramics. This may be attributed to the change of microstructure involving the formation of solid solution between PZT and PGO. The 1 wt% PGO-added PZT bodies sintered at 750°C exhibited an electromechanical coupling factor, Kp, of about 56%.  相似文献   

4.
The addition of sintering additives has always been detrimental to the mechanical properties of sintered ceramics; therefore, methods to reduce or, as in this case, eliminate sintering additives are usually relevant. In this paper, dense zircon ceramics were obtained starting from mechanically activated powder compacted by spark plasma sintering without employing sintering additives.The high energy ball milling (HEBM) of starting powder was effective to enhance the sintering kinetics. The structural changes of the zircon powder introduced by the HEBM were evaluated. The phase composition and the microstructure of bulk zircon material were analyzed by SEM (EDAX) and XRD. The Vickers hardness and the fracture toughness were evaluated as well.Fully dense materials were obtained at 1400 °C with a heating rate of 100 °C/min, 10 min soaking time and 100 MPa uniaxial pressure. The zircon samples sintered at temperatures above 1400 °C were dissociated in monoclinic zirconia and amorphous silica. The dissociation was detrimental for the mechanical properties. Unlike conventional sintering methods (hot pressing, pressureless sintering) SPS permitted to overcome the dissociation of the zircon material and to obtain additive free, fully dense zircon ceramic with outstanding mechanical properties.  相似文献   

5.
Tetragonal ZrO2 polycrystalline (TZP) composites with 2 wt.% Al2O3 and co-stabilised with 1 mol% Y2O3 and (4, 6 or 8) mol% CeO2 were sintered at 1450 °C for 20 min in a single mode 2.45 GHz microwave furnace. For comparison, conventional sintering was performed in air at 1450 °C for 20 min. The starting powder mixture was obtained by a suspension coating technique using yttrium nitrate, cerium nitrate and pure m-ZrO2 nanopowder. Fully dense material grades were obtained by both sintering methods. The influence of the composition and the sintering methods on the final phase composition and microstructure were investigated by X-ray diffraction and scanning electron microscopy. Finer and more uniform microstructures were observed in the microwave sintered ceramics when compared to the conventionally sintered samples. The fracture toughness increases with decreasing stabiliser content, whereas a reverse relation was found for the Vickers hardness. Comparable toughness and hardness values were obtained for the microwave and conventionally sintered samples.  相似文献   

6.
《Ceramics International》2015,41(6):7645-7650
Nano-sized ZnTiTa2O8 powders with ixiolite structure, with particle sizes ranging from 10 nm to 30 nm, were synthesized by thermal decomposition at 950 °C. The precursors were obtained by aqueous sol–gel and the compacted and sintered ceramics with nearly full density were obtained through subsequent heat treatment. The microstructure and electrical performance were characterized by field emission scanning electron microscopy, x-ray diffraction, and microwave dielectric measurements. All the samples prepared in the range 950–1150 °C exhibit single ixiolite phase and relative density between ~87% and ~94%. The variation of permittivity and Q·ƒ value agreed with that of the relative density. Pure ZnTiTa2O8 ceramic sintered at 1050 °C for 4 h exhibited good microwave dielectric properties with a permittivity of 35.7, Q·ƒ value of 57,550 GHz, and the temperature coefficient of resonant frequency of about −24.7 ppm/°C. The relatively low sintering temperature and excellent dielectric properties in the microwave range would make these ceramics promising for applications in electronics.  相似文献   

7.
《Ceramics International》2016,42(8):9887-9898
The aim of this study is to explore the influence of the processing route on the structural and physical properties of bulk MgTiO3 ceramics. Commercially available MgO and TiO2 powders were mechanically activated in a planetary ball mill. Green bodies were formed by an isostatic pressure of 300 MPa. The sintering of these samples was done either by the Two-Step Sintering (TSS) approach or by conventional pressureless sintering followed by Hot Isostatic Pressing (post-HIPing). The first set of compacts was sintered by TSS in air at 1300 °C for 30 min and the next step was performed at 1200 °C for 20 h. The density of the obtained samples after the two-step sintering reached almost 90% of the theoretical density (%TD). The second set of compacts was sintered at 1400 °C for 30 min in air. The samples without open porosity were post-sintered by the HIP at 1200 °C for 2 h in an argon atmosphere at a pressure of 200 MPa. The density significantly increased up to 96%TD. The differences between samples prepared by these two techniques were also analyzed by XRD and SEM. The lattice vibration spectra were obtained using Raman spectroscopy and they indicate a high degree of lattice disorder, as well as high values of the oxygen vacancy concentration. Electrical characteristic were established in the frequency range from 10 kHz to 10 GHz. The choice of the processing route had considerable influence on structural and physical properties of MgTiO3 ceramics.  相似文献   

8.
BaTiO3 (BT) powders were synthesized by the hydrothermal method for fabricating lead-free barium titanate piezoelectric ceramics. The obtained powders were washed by distilled water and 0.01N acetic acid solutions separately, and utilized to obtain piezoelectric ceramics by traditional sintering. BT ceramics with the highest piezoelectric properties (d33 value is over 190 pC/N) was obtained from the BT powder synthesized at 250 °C and washed by acetic acid solution. The influence of washing method and sintering temperature on the piezoelectric properties of BT ceramics were studied. The reasons were investigated by comparing the properties of BT powders and their compacts sintered at different temperature.  相似文献   

9.
Single-phase BiFeO3 powders were prepared at a temperature of 200 °C by a hydrothermal synthesis. BiFeO3 ceramics were prepared with the powders by a conventional ceramic process. The BiFeO3 ceramics with no impurity phase were prepared at the sintering temperature of 650–800 °C. The dense microstructure was observed in the BiFeO3 ceramics sintered at a temperature of 700 °C and higher. BiFeO3 ceramics show linear M–H curves in low H, which are antiferromagnetic behaviors. The dielectric dispersion was observed at the frequency range of 10 kHz to 1 MHz in the BiFeO3 ceramic sintered at 700 °C or lower. The dielectric constant and loss of the BiFeO3 ceramics sintered at 750 °C or higher were about 85 and 0.4 at 100 kHz, respectively.  相似文献   

10.
High purity calcined carbonaceous kaolin and α-Al2O3 powders were employed to prepare porous mullite ceramics (Sample A) using graphite as pore former with the reaction sintering method. For the purpose of comparison, porous mullite ceramics (Sample B) was also fabricated from the uncalcined carbonaceous clay incorporated with α-Al2O3 powders. Mullitization in the two samples was both nearly complete at 1500 °C, despite the fact that calcination of the clay remarkably depressed mullitization and promoted the formation of glass phase. The Sample A sintered at 1500 °C fractured mainly in an intergranular way, while the Sample B mainly underwent transgranular fracture. The experimental results revealed that densification behavior/open porosity of the Sample A was far more sensitive to sintering temperature. The pore size of the Sample A as well as the Sample B sintered at 1500 °C was in a narrower range of 0.3–5 μm.  相似文献   

11.
This paper reports the effects of using nano-precursor powders, including α-Si3N4 or amorphous-Si3N4, and particularly the partial replacement of AlN by Al metal precursor, on the properties of a fixed Ca-α-SiAlON composition, consolidated by spark plasma sintering at 1450 °C and 1600 °C. The observed changes in mechanical properties are related to the phases present in the microstructures. In addition to allowing the consolidation of dense and fine ceramics at lower temperatures, the partial replacement of AlN by Al metal precursor has shown remarkable improvement in the mechanical properties of samples sintered at 1600 °C containing α-Si3N4, a result of fine α-SiAlON grains and nitrogen-rich grain boundary phase. Another key contribution of Al metal precursor is found in lowering the sintering temperature while keeping, or even improving, the mechanical properties of the sintered samples, as observed in samples sintered at 1450 °C.  相似文献   

12.
《Ceramics International》2016,42(7):8290-8295
Aluminum oxynitride (AlON) powders were synthesized by the carbothermal reduction and nitridation process using commercial γ-Al2O3 and carbon black powders as starting materials. And AlON transparent ceramics were fabricated by pressureless sintering under nitrogen atmosphere. The effects of ball milling time on morphology and particle size distribution of the AlON powders, as well as the microstructure and optical property of AlON transparent ceramics were investigated. It is found that single-phase AlON powder was obtained by calcining the γ-Al2O3/C mixture at 1550 °C for 1 h and a following heat treatment at 1750 °C for 2 h. The AlON powder ball milled for 24 h showed smaller particles and narrower particle size distribution compared with the 12 h one, which was benefit for the improvement of optical property of AlON transparent ceramics. With the sintering aids of 0.25 wt% MgO and 0.04 wt% Y2O3, highly transparent AlON ceramics with in-line transmittance above 80% from visible to infrared range were obtained through pressureless sintering at 1850 °C for 6 h.  相似文献   

13.
The influence of binder burnout atmosphere (air or N2) on surface chemistry of thermo-chemically treated AlN powders processed in aqueous media, and on the final properties of AlN ceramics was studied. The surface chemistry after de-waxing was accessed by scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). X-ray diffraction (XRD), SEM, high-resolution transmission electron microscopy (HR-TEM), were used to identify the phase assemblage and for microstructural analysis. The effects of the residual carbon and oxygen at the surface on the thermal conductivity and sintered density of AlN samples were investigated. The surface C/O ratios were observed to correlate with the sintering behaviour, the composition and distribution of secondary phases, and grain-boundary composition, as well as thermal conductivity of AlN samples. Thermal conductivities of about 140 W/mK were obtained for the aqueous processed AlN samples de-waxed in nitrogen atmosphere and sintered for 2 h at 1750 °C in the presence of 4 wt.% YF3 + 2 wt.% CaF2 as sintering additives.  相似文献   

14.
《Ceramics International》2017,43(10):7461-7468
In this study, porous macro- and micro-cellular wollastonite-based ceramics was synthesized. A ceramic precursor, methylhydrocyclosiloxane, together with micro-sized CaCO3, was used as a starting material. After 20 min of ultrasound treatment, and calcination at 250 °C for 30 min, different pore-forming agents were added to the as-obtained powders. Differential thermal analysis was used to determine characteristic temperatures of processes occurring within powders during heating. Based on the obtained results, the sintering regime was set up. The prepared mixtures were pressed into pallets and sintered at 900 °C. During the sintering regime, porous wollastonite-based ceramics was obtained. The phase composition of the sintered samples, as well as the microstructures, were analyzed by using X-ray diffraction and SEM. A two-phase system was detected in all samples, CaSiO3 wollastonite and Ca2SiO4 larnite, and their ratio varied with each pore-forming agent. It was observed that the addition of different pore-forming agents resulted in significantly different microstructures. In a batch test, the influence of pH, the contact time and the initial ion concentration on the adsorption efficiency of As+5, Cr+6and phosphate ions on the synthesized adsorbents were studied. Time-dependent adsorption is best described by the pseudo-second-order kinetic model and the Weber-Morris model, which predict intra-particle diffusion as a rate-controlling step of the overall process. High adsorption capacities, 21.93, 23.88, and 27.29 mg g–1, were obtained for the CaCO3-siloxane-nanocellulose sorbent, and similar/lower capacities were obtained for the CaCO3-siloxane-PMMA and CaCO3-siloxane-cotton wool adsorbents.  相似文献   

15.
《Ceramics International》2016,42(13):14642-14655
This study reports on the synthesis and consolidation of HfB2-HfO2 ceramic powders via mechanical activation-assisted autoclave processing followed by pressureless sintering (PS) or spark plasma sintering (SPS). HfCl4, B2O3 and Mg starting powders were mechanically activated for 5 min to obtain homogeneously blended precursors with active particle surfaces. Autoclave synthesis was carried out at a relatively low temperature at 500 °C for 6 or 12 h. As-synthesized powders were purified from reaction by-products such as MgO and MgCl2 by washing and acid leaching treatments. The characterization investigations of the as-synthesized and purified powders were performed by using an X-ray diffractometer (XRD), stereomicroscope (SM), scanning electron microscope (SEM) and particle size analyzer (PSA). The purified powders with an average particle size of about 190 nm comprised the HfB2 phase with an amount of 79.6 wt% in addition to the HfO2 phase and a very small amount of Mg2Hf5O12 phase after mechanical activation for 5 min and autoclave processing for 12 h. They were consolidated at 1700 °C both by PS for 6 h and SPS for 15 min. The Mg2Hf5O12 phase decomposed during sintering and bulk samples only had the HfB2 and HfO2 phases. The bulk properties of the sintered samples were characterized in terms of microstructure, density, microhardness and wear characteristics. The HfB2-HfO2 ceramics consolidated by PS exhibited poor densification rates. A considerable improvement was obtained in the relative density (~91%), microhardness (~16 GPa) and relative wear resistance (2.5) values of the HfB2-HfO2 ceramics consolidated by SPS.  相似文献   

16.
Monophasic mullite precursors with composition of 3Al2O3·2SiO2 (3:2) were synthesized and then were sintered by Spark Plasma Sintering (SPS) to form transparent mullite ceramics. The precursor powders were calcined at 1100 °C for 2 h. The sintering was carried out by heating the sample to 1450 °C, holding for 10 min. The sintered body obtained a relative bulk density of above 97.5% and an infrared transmittance of 75–82% in wavelength of 2.5–4.3 μm without any additive. When the precursor powders were calcined at below 1100 °C, it was unfavorable for completely eliminating the residual OH, H2O and organic compound. However, when calcined temperature was too high, it was unfavorable either for full densification due to the absence of viscous flow of amorphous phase. At the same calcined temperature, the transmittance of sintered body was decreased with the increase of the sintering temperature above 1450 °C owing to the elongated grain growth.  相似文献   

17.
Advanced silicon nitride (Si3N4) ceramics were fabricated using a mixture of Si3N4 and silicon (Si) powders via conventional processing and sintering method. These Si3N4 ceramics with sintering additives of ZrO2 + Gd2O3 + MgO were sintered at 1800 °C and 0.1 MPa in N2 atmosphere for 2 h. The effects of added Si content on density, phases, microstructure, flexural strength, and thermal conductivity of the sintered Si3N4 samples were investigated in this study. The results showed that with the increase of Si content added, the density of the samples decreased from 3.39 g/cm3 to 2.92 g/cm3 except for the sample without initial Si3N4 powder addition, while the thermal diffusivity of the samples decreased slightly. This study suggested that addition of Si powder, which varied from 0 to 100%, in the starting materials might provide a promising route to fabricate cost-effective Si3N4 ceramics with a good combination of mechanical and thermal properties.  相似文献   

18.
Varistors based on SnO2 have attracted increasing interest in recent years. However, the combined effect of CoO–MnO on SnO2 ceramics is still unclear. In this study, the non-Ohmic behaviour of the 98.95 mol%SnO2–0.5 mol%CoO–0.5 mol%MnO–0.05 mol%Nb2O5 system, the microstructures and the influence of sintering temperature were investigated. The samples were prepared by the mixed oxide route, and were sintered at temperatures in the range 1250–1450 °C. SEM observation and EDS analysis revealed that the ceramics have a two-phase microstructure comprising SnO2 primary grains and a Mn, Co rich secondary phase of small particles. The sintered density of the samples increased with the increase in sintering temperature. The maximum non-linear coefficient (α = 10) was obtained at a sintering temperature of 1350 °C.  相似文献   

19.
Effects of slow-cooling at high temperatures and annealing at intermediate temperatures on dielectric loss tangent of AlN ceramics were explored. Y2O3 was added as a sintering additive to AlN powders, and the powders were pressureless-sintered at 1900 °C for 2 h in a nitrogen flow atmosphere. In succession to the sintering, AlN samples were slow-cooled at a rate of 1 °C/min from 1900 to 1750 °C and/or annealed at 970 °C for 4 h. Al5Y3O12 was detected in the AlN ceramics obtained by the slow-cooling and AlYO3 was found in the ceramics cooled at a rate of 30 °C/min. AlN ceramics with a relative density of 0.986 were obtained by the slow-cooling method. On the other hand, very low tan δ values between 2.6 and 4.6 × 10−4 were obtained when the AlN ceramics were annealed at 970 °C for 4 h.  相似文献   

20.
This study reports the influences of metallic cobalt (Co) and mechanical alloying (MA) on the microstructural and mechanical properties of TiB2 ceramics prepared by using a combined method of cold pressing and sintering. The effects of Co addition (0, 5, 10 and 20 wt.%) and mechanical alloying duration (0, 3, 6 and 9 h) on the properties of TiB2 ceramics were investigated. MA experiments were carried out in a Spex? 8000D Mixer/Mill and milled powders were subsequently compacted to cylindrical preforms by uniaxial pressing at 400 MPa. The green compacts were sintered in a controlled atmosphere at 1550 °C for 1 h. Phase and microstructural characterizations of the mechanically alloyed (MA’d) and sintered samples were performed by X-ray diffractometer (XRD), optical microscope (OM) and scanning electron microscope (SEM). Density measurements were conducted using Archimedes method. Vickers hardness, elastic modulus and fracture toughness of the sintered samples were measured using Indentation technique.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号