首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 375 毫秒
1.
In this paper, we examine image and video-based recognition applications where the underlying models have a special structure—the linear subspace structure. We discuss how commonly used parametric models for videos and image sets can be described using the unified framework of Grassmann and Stiefel manifolds. We first show that the parameters of linear dynamic models are finite-dimensional linear subspaces of appropriate dimensions. Unordered image sets as samples from a finite-dimensional linear subspace naturally fall under this framework. We show that an inference over subspaces can be naturally cast as an inference problem on the Grassmann manifold. To perform recognition using subspace-based models, we need tools from the Riemannian geometry of the Grassmann manifold. This involves a study of the geometric properties of the space, appropriate definitions of Riemannian metrics, and definition of geodesics. Further, we derive statistical modeling of inter and intraclass variations that respect the geometry of the space. We apply techniques such as intrinsic and extrinsic statistics to enable maximum-likelihood classification. We also provide algorithms for unsupervised clustering derived from the geometry of the manifold. Finally, we demonstrate the improved performance of these methods in a wide variety of vision applications such as activity recognition, video-based face recognition, object recognition from image sets, and activity-based video clustering.  相似文献   

2.
A geodesic is a parameterized curve on a Riemannian manifold governed by a second order partial differential equation. Geodesics are notoriously unstable: small perturbations of the underlying manifold may lead to dramatic changes of the course of a geodesic. Such instability makes it difficult to use geodesics in many applications, in particular in the world of discrete geometry. In this paper, we consider a geodesic as the indicator function of the set of the points on the geodesic. From this perspective, we present a new concept called fuzzy geodesics and show that fuzzy geodesics are stable with respect to the Gromov‐Hausdorff distance. Based on fuzzy geodesics, we propose a new object called the intersection configuration for a set of points on a shape and demonstrate its effectiveness in the application of finding consistent correspondences between sparse sets of points on shapes differing by extreme deformations.  相似文献   

3.
黎曼流形上的保局投影在图像集匹配中的应用   总被引:1,自引:1,他引:0       下载免费PDF全文
目的提出了黎曼流形上局部结构特征保持的图像集匹配方法。方法该方法使用协方差矩阵建模图像集合,利用对称正定的非奇异协方差矩阵构成黎曼流形上的子空间,将图像集的匹配转化为流形上的点的匹配问题。通过基于协方差矩阵度量学习的核函数将黎曼流形上的协方差矩阵映射到欧几里德空间。不同于其他方法黎曼流形上的鉴别分析方法,考虑到样本分布的局部几何结构,引入了黎曼流形上局部保持的图像集鉴别分析方法,保持样本分布的局部邻域结构的同时提升样本的可分性。结果在基于图像集合的对象识别任务上测试了本文算法,在ETH80和YouTube Celebrities数据库分别进行了对象识别和人脸识别实验,分别达到91.5%和65.31%的识别率。结论实验结果表明,该方法取得了优于其他图像集匹配算法的效果。  相似文献   

4.
The reconstruction of geometry or, in particular, the shape of objects is a common issue in image analysis. Starting from a variational formulation of such a problem on a shape manifold we introduce a regularization technique incorporating statistical shape knowledge. The key idea is to consider a Riemannian metric on the shape manifold which reflects the statistics of a given training set. We investigate the properties of the regularization functional and illustrate our technique by applying it to region-based and edge-based segmentation of image data. In contrast to previous works our framework can be considered on arbitrary (finite-dimensional) shape manifolds and allows the use of Riemannian metrics for regularization of a wide class of variational problems in image processing.  相似文献   

5.
6.
The aim in this paper is to use principal geodesic analysis to model the statistical variations for sets of facial needle maps. We commence by showing how to represent the distribution of surface normals using the exponential map. Shape deformations are described using principal geodesic analysis on the exponential map. Using ideas from robust statistics we show how this deformable model may be fitted to facial images in which there is significant self-shadowing. Moreover, we demonstrate that the resulting shape-from-shading algorithm can be used to recover accurate facial shape and albedo from real world images. In particular, the algorithm can effectively fill-in the facial surface when more than 30% of its area is subject to self-shadowing. To investigate the utility of the shape parameters delivered by the method, we conduct experiments with illumination insensitive face recognition. We present a novel recognition strategy in which similarity is measured in the space of the principal geodesic parameters. We also use the recovered shape information to generate illumination normalized prototype images on which recognition can be performed. Finally we show that, from a single input image, we are able to generate the basis images employed by a number of well known illumination-insensitive recognition algorithms. We also demonstrate that the principal geodesics provide an efficient parameterization of the space of harmonic basis images.  相似文献   

7.
In this paper we address the problem of 3D facial expression recognition. We propose a local geometric shape analysis of facial surfaces coupled with machine learning techniques for expression classification. A computation of the length of the geodesic path between corresponding patches, using a Riemannian framework, in a shape space provides a quantitative information about their similarities. These measures are then used as inputs to several classification methods. The experimental results demonstrate the effectiveness of the proposed approach. Using multiboosting and support vector machines (SVM) classifiers, we achieved 98.81% and 97.75% recognition average rates, respectively, for recognition of the six prototypical facial expressions on BU-3DFE database. A comparative study using the same experimental setting shows that the suggested approach outperforms previous work.  相似文献   

8.
This article provides an overview of various notions of shape spaces, including the space of parametrized and unparametrized curves, the space of immersions, the diffeomorphism group and the space of Riemannian metrics. We discuss the Riemannian metrics that can be defined thereon, and what is known about the properties of these metrics. We put particular emphasis on the induced geodesic distance, the geodesic equation and its well-posedness, geodesic and metric completeness and properties of the curvature.  相似文献   

9.
Many classification algorithms see a reduction in performance when tested on data with properties different from that used for training. This problem arises very naturally in face recognition where images corresponding to the source domain (gallery, training data) and the target domain (probe, testing data) are acquired under varying degree of factors such as illumination, expression, blur and alignment. In this paper, we account for the domain shift by deriving a latent subspace or domain, which jointly characterizes the multifactor variations using appropriate image formation models for each factor. We formulate the latent domain as a product of Grassmann manifolds based on the underlying geometry of the tensor space, and perform recognition across domain shift using statistics consistent with the tensor geometry. More specifically, given a face image from the source or target domain, we first synthesize multiple images of that subject under different illuminations, blur conditions and 2D perturbations to form a tensor representation of the face. The orthogonal matrices obtained from the decomposition of this tensor, where each matrix corresponds to a factor variation, are used to characterize the subject as a point on a product of Grassmann manifolds. For cases with only one image per subject in the source domain, the identity of target domain faces is estimated using the geodesic distance on product manifolds. When multiple images per subject are available, an extension of kernel discriminant analysis is developed using a novel kernel based on the projection metric on product spaces. Furthermore, a probabilistic approach to the problem of classifying image sets on product manifolds is introduced. We demonstrate the effectiveness of our approach through comprehensive evaluations on constrained and unconstrained face datasets, including still images and videos.  相似文献   

10.
We develop a computational model of shape that extends existing Riemannian models of curves to multidimensional objects of general topological type. We construct shape spaces equipped with geodesic metrics that measure how costly it is to interpolate two shapes through elastic deformations. The model employs a representation of shape based on the discrete exterior derivative of parametrizations over a finite simplicial complex. We develop algorithms to calculate geodesics and geodesic distances, as well as tools to quantify local shape similarities and contrasts, thus obtaining a formulation that accounts for regional differences and integrates them into a global measure of dissimilarity. The Riemannian shape spaces provide a common framework to treat numerous problems such as the statistical modeling of shapes, the comparison of shapes associated with different individuals or groups, and modeling and simulation of shape dynamics. We give multiple examples of geodesic interpolations and illustrations of the use of the models in brain mapping, particularly, the analysis of anatomical variation based on neuroimaging data.  相似文献   

11.
12.
Given a shape, a skeleton is a thin centered structure which jointly describes the topology and the geometry of the shape. Skeletons provide an alternative to classical boundary or volumetric representations, which is especially effective for applications where one needs to reason about, and manipulate, the structure of a shape. These skeleton properties make them powerful tools for many types of shape analysis and processing tasks. For a given shape, several skeleton types can be defined, each having its own properties, advantages, and drawbacks. Similarly, a large number of methods exist to compute a given skeleton type, each having its own requirements, advantages, and limitations. While using skeletons for two‐dimensional (2D) shapes is a relatively well covered area, developments in the skeletonization of three‐dimensional (3D) shapes make these tasks challenging for both researchers and practitioners. This survey presents an overview of 3D shape skeletonization. We start by presenting the definition and properties of various types of 3D skeletons. We propose a taxonomy of 3D skeletons which allows us to further analyze and compare them with respect to their properties. We next overview methods and techniques used to compute all described 3D skeleton types, and discuss their assumptions, advantages, and limitations. Finally, we describe several applications of 3D skeletons, which illustrate their added value for different shape analysis and processing tasks.  相似文献   

13.
A novel binning and learning framework is presented for analyzing and applying large data sets that have no explicit knowledge of distribution parameterizations, and can only be assumed generated by the underlying probability density functions (PDFs) lying on a nonparametric statistical manifold. For models’ discretization, the uniform sampling-based data space partition is used to bin flat-distributed data sets, while the quantile-based binning is adopted for complex distributed data sets to reduce the number of under-smoothed bins in histograms on average. The compactified histogram embedding is designed so that the Fisher–Riemannian structured multinomial manifold is compatible to the intrinsic geometry of nonparametric statistical manifold, providing a computationally efficient model space for information distance calculation between binned distributions. In particular, without considering histogramming in optimal bin number, we utilize multiple random partitions on data space to embed the associated data sets onto a product multinomial manifold to integrate the complementary bin information with an information metric designed by factor geodesic distances, further alleviating the effect of over-smoothing problem. Using the equipped metric on the embedded submanifold, we improve classical manifold learning and dimension estimation algorithms in metric-adaptive versions to facilitate lower-dimensional Euclidean embedding. The effectiveness of our method is verified by visualization of data sets drawn from known manifolds, visualization and recognition on a subset of ALOI object database, and Gabor feature-based face recognition on the FERET database.  相似文献   

14.
Graphs are a powerful and popular representation formalism in pattern recognition. Particularly in the field of document analysis they have found widespread application. From the formal point of view, however, graphs are quite limited in the sense that the majority of mathematical operations needed to build common algorithms, such as classifiers or clustering schemes, are not defined. Consequently, we observe a severe lack of algorithmic procedures that can directly be applied to graphs. There exists recent work, however, aimed at overcoming these limitations. The present paper first provides a review of the use of graph representations in document analysis. Then we discuss a number of novel approaches suitable for making tools from statistical pattern recognition available to graphs. These novel approaches include graph kernels and graph embedding. With several experiments, using different data sets from the field of document analysis, we show that the new methods have great potential to outperform traditional procedures applied to graph representations.  相似文献   

15.
In medical image analysis and high level computer vision, there is an intensive use of geometric features like orientations, lines, and geometric transformations ranging from simple ones (orientations, lines, rigid body or affine transformations, etc.) to very complex ones like curves, surfaces, or general diffeomorphic transformations. The measurement of such geometric primitives is generally noisy in real applications and we need to use statistics either to reduce the uncertainty (estimation), to compare observations, or to test hypotheses. Unfortunately, even simple geometric primitives often belong to manifolds that are not vector spaces. In previous works [1, 2], we investigated invariance requirements to build some statistical tools on transformation groups and homogeneous manifolds that avoids paradoxes. In this paper, we consider finite dimensional manifolds with a Riemannian metric as the basic structure. Based on this metric, we develop the notions of mean value and covariance matrix of a random element, normal law, Mahalanobis distance and χ2 law. We provide a new proof of the characterization of Riemannian centers of mass and an original gradient descent algorithm to efficiently compute them. The notion of Normal law we propose is based on the maximization of the entropy knowing the mean and covariance of the distribution. The resulting family of pdfs spans the whole range from uniform (on compact manifolds) to the point mass distribution. Moreover, we were able to provide tractable approximations (with their limits) for small variances which show that we can effectively implement and work with these definitions.  相似文献   

16.
In this paper, we make use of the relationship between the Laplace-Beltrami operator and the graph Laplacian, for the purposes of embedding a graph onto a Riemannian manifold. To embark on this study, we review some of the basics of Riemannian geometry and explain the relationship between the Laplace-Beltrami operator and the graph Laplacian. Using the properties of Jacobi fields, we show how to compute an edge-weight matrix in which the elements reflect the sectional curvatures associated with the geodesic paths on the manifold between nodes. For the particular case of a constant sectional curvature surface, we use the Kruskal coordinates to compute edge weights that are proportional to the geodesic distance between points. We use the resulting edge-weight matrix to embed the nodes of the graph onto a Riemannian manifold. To do this, we develop a method that can be used to perform double centring on the Laplacian matrix computed from the edge-weights. The embedding coordinates are given by the eigenvectors of the centred Laplacian. With the set of embedding coordinates at hand, a number of graph manipulation tasks can be performed. In this paper, we are primarily interested in graph-matching. We recast the graph-matching problem as that of aligning pairs of manifolds subject to a geometric transformation. We show that this transformation is Pro-crustean in nature. We illustrate the utility of the method on image matching using the COIL database.  相似文献   

17.
We develop a framework for polynomial regression on Riemannian manifolds. Unlike recently developed spline models on Riemannian manifolds, Riemannian polynomials offer the ability to model parametric polynomials of all integer orders, odd and even. An intrinsic adjoint method is employed to compute variations of the matching functional, and polynomial regression is accomplished using a gradient-based optimization scheme. We apply our polynomial regression framework in the context of shape analysis in Kendall shape space as well as in diffeomorphic landmark space. Our algorithm is shown to be particularly convenient in Riemannian manifolds with additional symmetry, such as Lie groups and homogeneous spaces with right or left invariant metrics. As a particularly important example, we also apply polynomial regression to time-series imaging data using a right invariant Sobolev metric on the diffeomorphism group. The results show that Riemannian polynomials provide a practical model for parametric curve regression, while offering increased flexibility over geodesics.  相似文献   

18.
This paper presents a novel Riemannian framework for shape analysis of parameterized surfaces. In particular, it provides efficient algorithms for computing geodesic paths which, in turn, are important for comparing, matching, and deforming surfaces. The novelty of this framework is that geodesics are invariant to the parameterizations of surfaces and other shape-preserving transformations of surfaces. The basic idea is to formulate a space of embedded surfaces (surfaces seen as embeddings of a unit sphere in IR3) and impose a Riemannian metric on it in such a way that the reparameterization group acts on this space by isometries. Under this framework, we solve two optimization problems. One, given any two surfaces at arbitrary rotations and parameterizations, we use a path-straightening approach to find a geodesic path between them under the chosen metric. Second, by modifying a technique presented in [25], we solve for the optimal rotation and parameterization (registration) between surfaces. Their combined solution provides an efficient mechanism for computing geodesic paths in shape spaces of parameterized surfaces. We illustrate these ideas using examples from shape analysis of anatomical structures and other general surfaces.  相似文献   

19.
In this paper, we propose novel elastic graph matching (EGM) algorithms for face recognition assisted by the availability of 3D facial geometry. More specifically, we conceptually extend the EGM algorithm in order to exploit the 3D nature of human facial geometry for face recognition/verification. In order to achieve that, first we extend the matching module of the EGM algorithm in order to capitalize on the 2.5D facial data. Furthermore, we incorporate the 3D geometry into the multiscale analysis used and build a novel geodesic multiscale morphological pyramid of dilations/erosions in order to fill the graph jets. We show that the proposed advances significantly enhance the performance of EGM algorithms. We demonstrate the efficiency of the proposed advances in the face recognition/verification problem using photometric stereo.  相似文献   

20.
Isometric 3D shape partial matching has attracted a great amount of interest, with a plethora of applications ranging from shape recognition to texture mapping. In this paper, we propose a novel isometric 3D shape partial matching algorithm using the geodesic disk Laplace spectrum (GD-DNA). It transforms the partial matching problem into the geodesic disk matching problem. Firstly, the largest enclosed geodesic disk extracted from the partial shape is matched with geodesic disks from the full shape by the Laplace spectrum of the geodesic disk. Secondly, Generalized Multi-Dimensional Scaling algorithm (GMDS) and Euclidean embedding are conducted to establish final point correspondences between the partial and the full shape using the matched geodesic disk pair. The proposed GD-DNA is discriminative for matching geodesic disks, and it can well solve the anchor point selection problem in challenging partial shape matching tasks. Experimental results on the Shape Retrieval Contest 2016 (SHREC’16) benchmark validate the proposed method, and comparisons with isometric partial matching algorithms in the literature show that our method has a higher precision.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号