首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 218 毫秒
1.
采用静电纺丝技术制备了聚丙烯腈(PAN)纳米纤维膜,研究其微观形貌及过滤性能。结果表明,所制备的PAN纳米纤维形态结构良好。纺丝液中PAN质量分数大时(18 wt%)纤维直径最大;PAN质量分数小(14 wt%),且纺丝电压最大(24 Kv)时,纤维直径最小。纤维直径大时,膜的平均孔径大,为7.6μm;纤维直径小时,膜的平均孔径最小,为2.7μm。孔径最小的纳米纤维膜的过滤效率最佳,达到了98.3%,且呼吸阻力为16.4 mm H2O。  相似文献   

2.
将石墨烯(GR)纳米颗粒掺杂到聚丙烯腈(PAN)纺丝溶液中,利用静电纺丝技术制备石墨烯/聚丙烯腈(GR/PAN)复合纳米纤维膜。研究PAN质量分数、GR用量、纺丝电压及接收距离对GR/PAN复合纳米纤维膜形貌和过滤性能的影响,发现最优纺丝工艺参数为PAN质量分数14.0%、GR用量1.5%、纺丝电压26 kV、接收距离14 cm、注射速度1 mL/h。此最优纺丝工艺参数制备的GR/PAN复合纳米纤维膜的过滤效率为98.86%,过滤阻力为110.30 Pa。  相似文献   

3.
将不同质量分数的聚丙烯腈( PAN)纺丝液进行静电纺丝,制备了PAN纳米纤维多孔膜,并对静电纺PAN纳米纤维膜的形貌、纤维直径、孔隙率和比表面积、力学性能以及过滤性能进行表征和测试.结果表明,随着PAN质量分数的增加,纤维的平均直径明显增加;对应的静电纺多孔纤维膜的孔隙率和比表面积都减小、过滤效率降低.其中,由PAN质...  相似文献   

4.
为开发用于空气过滤的纳米纤维,采用静电纺丝技术制备了聚丙烯腈(PAN)纳米纤维膜,探讨了其纺丝液质量分数及纺丝电压对所纺纤维微观形貌的影响,同时研究了纤维膜厚度对过滤效率和压降的影响。实验结果表明:PAN纺丝液质量分数为12%,纺丝电压为20 k V时,所得纤维粗细均匀,平均直径为230 nm;当纤维膜厚度由18μm增至35μm时,过滤压降则由121.93 Pa升至591.75 Pa,而过滤效率由81.78%升至99.24%。对过滤性能较好的纤维膜分别进行力学性能和泡压法滤膜孔径测试,测得此纤维膜的弹性模量为223.67 MPa,断裂伸长率为51.96%,拉伸断裂应力为5.93 MPa,拉伸强度为7.77 MPa,拉伸屈服应力为2.79 MPa,平均孔径为2.064 3μm。  相似文献   

5.
对适用于全新风系统的高效低阻并具有抑菌性能的复合空气过滤材料进行研发。先将聚丙烯腈(PAN)静电纺纳米纤维膜沉积到优选的丙纶(PP纤维)针刺过滤材料上,测试其过滤性能,采用极差分析和灰色聚类分析法选出最优静电纺丝工艺参数;再配制石墨烯质量分数分别为0.5%、1.0%和1.5%的石墨烯/PAN静电纺丝液,基于最优静电纺丝工艺参数,制备石墨烯/PAN静电纺/PP纤维针刺复合空气过滤材料,测试并分析其过滤性能和抑菌性能。结果表明:制备PAN静电纺纳米纤维膜的最优静电纺丝工艺参数为PAN质量分数11.0%、纺丝电压15 kV、注射速度0.84 mL/h、接收距离14 cm;在最优静电纺丝工艺参数条件下,石墨烯质量分数为0.5%时,石墨烯/PAN静电纺/PP纤维针刺复合空气过滤材料的过滤性能最好。石墨烯/PAN静电纺/PP纤维针刺复合空气过滤材料高效低阻,并具有优良的抑菌性能,适用于全新风系统过滤室内空气中的微细颗粒物。  相似文献   

6.
静电纺丝滤膜具有良好的过滤性能,但是要纺制具有可控性的过滤材料,需了解纺丝参数及溶液性能与过滤性能之间的关系。首先,利用静电纺丝法制备了静电纺PAN纳米纤维膜,研究纺丝时间和纺丝液浓度对纤维膜结构和过滤性能的影响。通过扫描电子显微镜和自动滤料检测仪对PAN纳米纤维膜的形貌、过滤效率和滤阻进行了测试分析。之后研究了溶液放置时间对滤膜过滤性能的影响。研究结果表明:随纺丝时间的延长,纤维的直径变化不大,过滤效率和滤阻增加;随着纺丝液浓度的增加,纤维的直径变大,过滤效率和滤阻先增加后降低;纺丝液质量分数为10%时,滤阻较小,过滤效率高;溶液放置一定时间后,制得纤维的直径变粗,不同纺丝时间、纺丝液浓度条件下的滤膜过滤效率、滤阻均下降。  相似文献   

7.
文章采用静电纺丝技术,以二氧化硅(SiO_2)作为驻极体,制备了不同的PAN/SiO_2复合驻极纳米纤维膜,并对其微观结构、透气性能和过滤性能等进行了分析。结果发现:与纯PAN纳米纤维滤膜相比,PAN/SiO_2纳米纤维的直径和表面水接触角都呈现增加的趋势。随着SiO_2质量分数的增加,PAN/SiO_2纳米纤维滤膜的透气率先减小后增加,过滤效率和阻力压降先增加后减小。当SiO_2的质量分数为0.5%,纺丝时间为30 min,制备的PAN/SiO_2复合纳米纤维滤膜的品质因子最高为0.087 15 Pa-1,此时滤膜的透气率为65 mm/s,过滤效率为99.95%,阻力压降为87.22 Pa,过滤性能最优,可开发高效低阻的空气过滤材料。  相似文献   

8.
针对聚丙烯(PP)熔喷非织造布抗菌性能不足的问题,本文以PP熔喷非织造布为静电纺丝装置的接受基布、CuO-NPs为抗菌材料,制备具有高效抗菌性能的聚丙烯/聚丙烯腈/纳米氧化铜(PP/PAN/CuO-NPs)复合非织造布。研究了CuO-NPs质量分数与静电纺丝时间对复合非织造布抗菌等性能的影响。结果表明:当纺丝时间为1 h、CuO-NPs质量分数在0.3%~0.9%时,复合非织造布对E.coli和S.aureus的抑菌率均>99.99%。纺丝时间为1 h,随着CuO-NPs质量分数增大,复合非织造布纤维直径增大、直径分布均匀性降低、疏水性能下降。CuO-NPs质量分数不变,随着纺丝时间增加,复合非织造布的过滤效率提升,透气性却下降。纺丝时间相同,复合非织造布的过滤效率随着CuO-NPs质量分数增大而增大;CuO-NPs质量分数增大时,复合非织造布的透气性在较短纺丝时间(0.5~1 h)内先下降后提升,在较长纺丝时间(1.5~2.5 h)内显著下降。此外,CuO-NPs的加入不会改变PAN纳米纤维膜的化学结构。静电纺纳米纤维膜与PP基布的复合可以制备高效过滤和抑菌的医用防疫纺织品。  相似文献   

9.
以聚丙烯腈(PAN)为原料,N,N-二甲基甲酰胺为溶剂制备纺丝液并进行静电纺丝,用熔喷聚丙烯(PP)非织造材料为基材接收静电纺PAN纳米纤维膜,制备PAN静电纺/PP熔喷复合材料。研究了静电纺丝工艺参数对纤维直径及均匀度的影响,优化了静电纺丝工艺,在此基础上改变纺丝时间控制熔喷非织造材料表面复合的静电纺纳米纤维含量,通过AFC-131滤料性能测试系统测试了PAN静电纺/PP熔喷复合材料的空气过滤性能。结果表明,在熔喷非织造材料喷覆静电纺PAN纳米纤维膜后,过滤效率明显提高,颗粒越小,过滤效率提高越多,且随喷覆时间的增加,过滤效率提高,滤阻增加,但滤阻增加值小于过滤效率增加值,综合考虑在纺丝时间为10min时,可以制备高效低阻的PAN静电纺/PP熔喷复合非织造过滤材料。  相似文献   

10.
为获得比常规静电纺丝纤维直径更细的聚丙烯腈(PAN)纳米纤维,采用复合静电纺丝方法制备了聚丙烯腈/醋酸丁酸纤维素(PAN/CAB)复合纳米纤维,再溶解掉复合纳米纤维中的CAB组分,得到超细PAN纳米纤维并对其进行氨基化改性后用于吸附直接红23(DR23)染料。研究了PAN和CAB的混合比例、纺丝溶液质量分数和纺丝液挤出速度3个因素对所得PAN 纳米纤维直径的影响,并比较了常规静电纺和复合静电纺制备出的PAN纳米纤维改性后的染料吸附量。实验结果表明:该方法制得的PAN纳米纤维的平均直径在50~80 nm范围内,其中当PAN和CAB的质量比为15:85、纺丝溶液质量分数为15%、纺丝液挤出速度为1.5 mL/h、纺丝电压为10 kV、接收距离为20 cm时,得到的PAN纳米纤维的平均直径为50 nm;改性后纳米纤维对DR 23的平衡吸附量达833mg/g。  相似文献   

11.
将纳米锡(Sn)与聚丙烯腈(PAN)共混,采用静电纺丝法制备Sn/PAN纳米纤维膜并进行炭化处理。使用扫描电子显微镜、透射电子显微镜和X射线衍射法对纤维平均直径、直径分布、Sn在纤维上的存在情况以及Sn加入到PAN中静电纺丝后的结晶程度进行表征,将炭化后的纤维膜直接制成锂离子电池负极,测试其电化学性能。结果表明:随着纺丝电压升高或固化距离增大,纤维直径减小;当静电纺丝电压为14 kV,固化距离为14 cm时,纤维平均直径较小,分布最均匀;炭化后纤维变细;Sn加入到PAN中静电纺丝后发生团聚,结晶程度明显下降;Sn/PAN作为锂离子电池负极材料,具有良好的储能性能。  相似文献   

12.
利用静电纺丝技术制备PAN/竹炭粉纳米纤维膜,探讨了竹炭粉含量对纳米纤维膜微观形貌与纤维直径的影响,以及复合纳米纤维膜的过滤性能。研究结果表明:在相同工艺参数条件下,加入质量分数为2.0%的竹炭粉时,所得纳米纤维膜中纤维的直径较小(397.26nm),且纤维直径分布均匀。以纯PAN纳米纤维膜+PAN/竹炭粉纳米纤维膜+纯PAN纳米纤维膜结构作为芯层,聚丙烯(PP)非织造布作为外层制成的过滤材料,其流量大、阻力低,过滤效率高达99.85%。  相似文献   

13.
方玮  徐岚 《纺织学报》2018,39(10):7-11
为克服传统静电纺丝生产效率低、纺丝过程难以控制、针头易堵塞等问题,实现高效制备高质量纳米纤维膜,在气泡静电纺的基础上,提出了漏斗式喷气静电纺丝技术。以聚乙烯吡咯烷酮(PVP)溶液为纺丝液,通过漏斗式喷气静电纺技术成功地制备了高质量的PVP 纳米纤维膜,并运用控制变量法分析了溶液质量分数、表面活性剂质量分数和施加电压等对纤维膜形貌和质量的影响。结果表明:当纺丝溶液中PVP 质量分数为32%,纺丝电压为60 kV,表面活性剂质量分数为0.1%时,获得的PVP 纳米纤维膜综合性能最佳,其表面形貌良好,纤维直径较细且直径分布较均匀。  相似文献   

14.
以聚乙烯醇(PVA)和壳聚糖(CS)为原料,使用静电纺丝设备制备复合纳米纤维膜,纺丝液中CS的质量百分数最大为1.3%。探究了纺丝工艺参数对静电纺PVA/CS纳米纤维膜形态结构的影响。结果表明,在一定范围内,静电纺PVA/CS复合纳米纤维的直径随纺丝电压的增大而减小,随着纺丝距离的增大而增大,随纺丝液流量的增加而增加。通过正交试验得到优化的纺丝工艺条件:纺丝电压21kv,纺丝距离14cm,纺丝液流量0.2mL/h,所纺纤维的平均直径为128nm,纤维直径CV值为28%。  相似文献   

15.
以聚丙烯腈(PAN)为原料,通过静电纺丝制备PAN纳米纤维并沉积在聚丙烯(PP)针刺非织造材料的表面,制备成静电纺/针刺复合过滤材料。对复合过滤材料结构、纤维直径及过滤性能进行测试。结果表明:当PAN纺丝液质量分数为12%,纺丝电压15 kV,接收距离6.1 cm,溶液流速1 mL/h,接收时间1 h时,复合过滤材料的过滤效率可达到95.57%,而呼吸阻力仅为3.8 mm H_2O,可用于制备高效低阻空气过滤材料。  相似文献   

16.
以环境友好型复配液(乙酸和水的混合溶液,二者体积比3∶1)作为溶剂,通过静电纺丝技术制备二醋酸纳米纤维膜。探讨二醋酸质量分数、纺丝电压、纺丝速度等主要工艺参数对纤维直径和表面形态的影响,并对纳米二醋酸纤维膜与常规水刺二醋酸非织造织物所构成的复合滤料的过滤性能进行测试与分析。试验结果表明:当二醋酸质量分数为13%、纺丝电压为20 kV、纺丝速度为0.5 mL/h时,能获得形态较好的纤维及无纺膜;复合滤料对于粒径为2μm的颗粒的过滤效率达到99.84%,过滤阻力为118 Pa,成功制备了高效低阻的环保型过滤材料。  相似文献   

17.
利用静电辅助溶液喷射纺丝设备制备了间位芳纶(PMIA)纳米纤维膜,通过单因素法研究了纺丝液浓度、感应电压、牵伸风压等纺丝工艺参数对纤维膜形貌、直径和平均孔径的影响规律。并进一步研究了不同面密度PMIA纳米纤维膜的过滤性能。结果表明:纺丝液浓度和感应电压影响着纤维分布和纤维形态,纺丝液浓度和牵伸风压对纤维直径影响较大,感应电压和纺丝液浓度对纤维膜的平均孔径影响显著;当纤维膜的面密度为11 g/m2时,其过滤效率可达到99.429%,压降为125.9 Pa,表明PMIA纳米纤维膜具有良好的过滤性能;且PMIA纳米纤维膜在278.2℃以下能保持稳定的热力学性能,有利于其在高温高效空气过滤材料领域的应用。  相似文献   

18.
为提高静电纺的纺丝速率及纤维强度,通过同轴静电纺丝针头结合高速气流辅助静电纺,制备AgNWs-PVDF纳米纤维膜。并利用SEM、透气性、过滤性、力学性能、抗菌性能、孔隙率及孔径分布等测试研究了纳米纤维微观形貌结构、过滤、强力和抗菌性能。结果表明:加入AgNWs后,0.5%AgNWs-PVDF气喷-电纺纳米纤维膜的平均直径最低,可达73.85 nm,同时纤维膜的平均孔径、断裂伸长减小,1%AgNWs-PVDF气喷-电纺膜断裂强度最强,达6.52 MPa。随着AgNWs含量的增加气喷-电纺膜的亲水性提高、透气性减小、过滤效率增大,2%AgNWs-PVDF气喷-电纺纤维膜抑菌效果最好,对大肠杆菌和金黄色葡萄球菌的抑菌圈直径分别为26.23、26.89 mm。  相似文献   

19.
为研究二醋酸纳米纤维工艺参数对其直径分布的影响,采用静电纺丝技术制备纳米纤维,对影响纳米纤维形貌的纺丝液质量分数、纺丝距离、电压及纺丝速度等参数进行探讨,对实验工艺进行优化,确定实验最佳参数。借助扫描电镜对制备的纳米纤维形貌进行观察,并应用Photoshop CS 3.0软件对纤维直径进行测量统计。结果表明,纺丝液质量分数、纺丝速度、纺丝距离对纳米纤维直径的影响较为显著,而纺丝电压对纳米纤维直径的影响相对较小。  相似文献   

20.
静电纺丝可获得丝素纳米级纤维,并以非织造布状排列,广泛用于细胞支架、伤口包覆及药物控释等。用甲酸溶解丝素室温干燥膜,研究了静电纺丝素纳米纤维非织造膜的形态结构,分析其影响因素。结果表明:非织造膜孔隙率为32.3%,孔径80~600 nm;纤维直径与纺丝液质量分数表现出高度显著线性关系,纤维直径随纺丝液质量分数的升高而增大;纤维直径开始随电压的增大而变小,之后变大;电场强度相同,高电压/长距离电场形成的纤维直径小。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号