首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
2.
The velocity of cold spray particles was measured by a diagnostic system designed for thermal spray particles that is based on thermal radiation. A laser beam was used to illuminate the cold spray particles in cold spraying to obtain a sufficient radiant energy intensity for detection. The measurement was carried out for copper particles of different mean particle sizes. The particle velocity was also estimated using a two-dimensional axisymmetric model developed previously. The simulated velocity agreed well with the measured result. This fact indicates that particle velocity in cold spraying can be predicted reasonably by simulation. Therefore, it is possible to optimize the cold spray process with the aid of the simulation results. This article was originally published inBuilding on 100 Years of Success, Proceedings of the 2006 International Thermal Spray Conference (Seattle, WA), May 15–18, 2006, B.R. Marple, M.M. Hyland, Y.-Ch. Lau, R.S. Lima, and J. Voyer, Ed., ASM International, Materials Park, OH, 2006.  相似文献   

3.
The critical velocity of copper (Cu) particles for deposition in cold spraying was estimated both experimentally and theoretically. An experimental method is proposed to measure the critical velocity based on the theoretical relationship between deposition efficiency and critical velocity at different spray angles. A numerical simulation of particle impact deformation is used to estmate the critical velocity. The theoretical estimation is based on the critical velocity corresponding to the particle velocity at which impact begins to cause adiabatic shear instability. The experimental deposition was conducted using Cu particles of different particle sizes, velocities, oxygen contents, and temperatures. The dependency of the critical velocity on particle temperature was examined. Results show that the critical velocity can be reasonably measured by the proposed test method, which detects the change of critical velocity with particle temperature and oxygen content. The Cu particles of oxygen content 0.01 wt.% yielded a critical velocity of about 327 m/s. Experiments show that the oxygen content of powder significantly influences the critical velocity. Variations in oxygen content can explain the large discrepancies in critical velocity that have been reported by different investigators. Critical velocity is also found to be influenced by particle temperature as well as types of materials. High particle temperature causes a decrease in critical velocity. This effect is attributed to the thermal softening at elevated temperatures. The original version of this paper was published in the CD ROM Thermal Spray Connects: Explore Its Surfacing Potential, International Thermal Spray Conference, sponsored by DVS, ASM International, and HW International Institute of Welding, Basel, Switzerland, May 2–4, 2005, DVS-Verlag GmbH, Düsseldorf, Germany.  相似文献   

4.
《Acta Materialia》2003,51(15):4379-4394
Cold gas spraying is a relatively new coating process by which coatings can be produced without significant heating of the sprayed powder. In contrast to the well-known thermal spray processes such as flame, arc, and plasma spraying, in cold spraying there is no melting of particles prior to impact on the substrate. The adhesion of particles in this process is due solely to their kinetic energy upon impact. Experimental investigations show that successful bonding is achieved only above a critical particle velocity, whose value depends on the temperature and the thermomechanical properties of the sprayed material. This paper supplies a hypothesis for the bonding of particles in cold gas spraying, by making use of numerical modelling of the deformation during particle impact. The results of modelling are assessed with respect to the experimentally evaluated critical velocities, impact morphologies and strengths of coatings. The analysis demonstrates that bonding can be attributed to adiabatic shear instabilities which occur at the particle surface at or beyond the critical velocity. On the basis of this criterion, critical velocities can be predicted and used to optimise process parameters for various materials.  相似文献   

5.
Characterization of Nanostructured WC-Co Deposited by Cold Spraying   总被引:1,自引:0,他引:1  
Nanostructured WC-Co coating was deposited by cold spraying using a nanostructured WC-12Co powder. The critical velocity for the particle to deposit was measured. The coating microstructure was characterized by X-ray diffraction analysis, scanning electron microscopy, and transmission electron microscopy. The coating hardness was tested using a Vickers hardness tester. The deposition behavior of single WC-Co particle was examined. WC particle size was measured for comparison of deposit properties to that of sintered bulk. The result shows that the nanostructured WC-Co coating can be successfully deposited by cold spraying using nanostructured powders. The coating exhibited a dense microstructure with full retention of the original nanostructure in the powder to the coating. The test of microhardness of the coating yielded a value of over 1820 Hv0.3, which is comparable to that of sintered nanostructured WC-Co. The deposition behavior of WC-Co powders as superhard cermet materials in cold spraying and powder structure effects is discussed. This article is an invited paper selected from presentations at the 2007 International Thermal Spray Conference and has been expanded from the original presentation. It is simultaneously published in Global Coating Solutions, Proceedings of the 2007 International Thermal Spray Conference, Beijing, China, May 14-16, 2007, Basil R. Marple, Margaret M. Hyland, Yuk-Chiu Lau, Chang-Jiu Li, Rogerio S. Lima, and Ghislain Montavon, Ed., ASM International, Materials Park, OH, 2007.  相似文献   

6.
An analysis of the cold spray process and its coatings   总被引:9,自引:0,他引:9  
In this study, computational fluid dynamics (CFD) and extensive spray tests were performed for detailed analyses of the cold spray process. The modeling of the gas and particle flow field for different nozzle geometries and process parameters in correlation with the results of the experiments reveal that adhesion only occurs when the powder particles exceed a critical impact velocity that is specific to the spray material. For spherical copper powder with low oxygen content, the critical velocity was determined to be about 570 m/s. With nitrogen as the process gas and particle grain sizes from 5–25 μm, deposition efficiencies of more than 70% were achieved. The cold sprayed coatings show negligible porosity and oxygen contents comparable to the initial powder feedstock. Therefore, properties such as the electrical conductivity at room temperature correspond to those of the bulk material. The methods presented here can also be applied to develop strategies for cold spraying of other materials such as zinc, stainless steel, or nickel-based super-alloys.  相似文献   

7.
中国冷喷涂研究进展   总被引:18,自引:1,他引:17  
冷喷涂是通过高速固态颗粒依次与固态基体碰撞后、经过适当的变形牢固结合在基体表面而依次沉积形成沉积层的方法.其关键技术是控制不同材料粒子的速度超过其相应的临界速度.文中总结了中国冷喷涂研究的进展.10年来,中国对冷喷涂的研究有了长足进展,发表的论文数量从2000年1篇增加到2007年的28篇.在冷喷涂设备系统研究的基础上,研究工作的基本方法包括数值模拟和试验研究两个方面.当前中国冷喷涂涂层沉积研究基本处于国际前沿,实现了多种金属合金材料、金属间化合物、金属陶瓷与陶瓷涂层的沉积.涂层不仅可以用作保护涂层,还可以用作功能涂层,具有钎料功能的涂层可以通过冷喷涂预制钎料而为钎焊作准备,关于涂层的结合、涂层内颗粒之间的结合、涂层沉积过程规律与组织结构的控制等相关的基础研究还有待于深入开展.  相似文献   

8.
In cold spraying, the impact particle velocity plays a key role for successful deposition. It is well known that only those particles can achieve successful bonding which have an impact velocity exceeding a particular threshold. This critical velocity depends on the thermomechanical properties of the impacting particles at impacting temperature. The latter depends on the gas temperature in the torch but also on stand-off distance and gas pressure. In the past, some semiempirical approaches have been proposed to estimate particle impact and critical velocities. Besides that, there are a limited number of available studies on particle velocity measurements in cold spraying. In the present work, particle velocity measurements were performed using a cold spray meter, where a laser beam is used to illuminate the particles ensuring sufficiently detectable radiant signal intensities. Measurements were carried out for INCONEL® alloy 718-type powders with different particle sizes. These experimental investigations comprised mainly subcritical spray parameters for this material to have a closer look at the conditions of initial deposition. The critical velocities were identified by evaluating the deposition efficiencies and correlating them to the measured particle velocity distributions. In addition, the experimental results were compared with some values estimated by model calculations.  相似文献   

9.
Cold spray is a promising method by which to deposit dense Fe-based metallic glass coatings on conventional metal substrates. Relatively low process temperatures offer the potential to prevent the crystallization of amorphous feedstock powders while still providing adequate particle softening for bonding and coating formation. In this study, Fe48Mo14Cr15Y2C15B6 powder was sprayed onto a mild steel substrate, using a variety of process conditions, to investigate the feasibility of forming well-bonded amorphous Fe-based coatings. Particle splat adhesion was examined relative to impact conditions, and the limiting values of temperature and velocity associated with successful softening and adhesion were empirically established. Variability of particle sizes, impact temperatures, and impact velocities resulted in splat morphologies ranging from well-adhered deformed particles to substrate craters formed by rebounded particles and a variety of particle/substrate interface conditions. Transmission electron microscopy studies revealed the presence of a thin oxide layer between well-adhered particles and the substrate, suggesting that bonding is feasible even with an increased oxygen content at the interface. Results indicate that the proper optimization of cold spray process parameters supports the formation of Fe-based metallic glass coatings that successfully retain their amorphous structure, as well as the superior corrosion and wear-resistant properties of the feedstock powder.  相似文献   

10.
Cold gas dynamic spraying of iron-base amorphous alloy   总被引:2,自引:0,他引:2  
This paper describes recent efforts to synthesize iron-base amorphous alloys coatings using cold gas dynamic spraying. Characterization of the gas-atomized iron-base (Fe-Cr-Mo-W-C-Mn-Si-Zr-B) powder shows that the powder is fully amorphous when the particle diameter is below 20 μm. The coatings produced were composed of the same microstructure as the one observed in the feedstock powder. The overall deformation suggests the occurrence of a localized deformation process at the particle/particle boundary and a possible adiabatic deformation softening inside the powder particles during splat formation. The synthesis of fully amorphous, porous-free coatings using cold gas dynamic spraying was demonstrated in this work. This article was originally published inBuilding on 100 Years of Success, Proceedings of the 2006 International Thermal Spray Conference (Seattle, WA), May 15–18, 2006, B.R. Marple, M.M. Hyland, Y.-Ch. Lau, R.S. Lima, and J. Voyer, Ed., ASM International, Materials Park, OH, 2006.  相似文献   

11.
冷喷涂TC4涂层临界沉积速度计算及制备涂层性能研究   总被引:1,自引:1,他引:0  
目的研究冷喷涂TC4涂层的临界沉积速度及粒子温度对临界沉积速度的影响规律,并研究气体压强对沉积涂层性能的影响规律。方法理论研究上,采用有限元LS-DYNA软件中的Johnson-Cook塑性模型,选取3D164计算单元建立模型,研究粒子在不同温度和不同速度下碰撞基体后的形貌特征,确定粒子沉积临界速度。试验研究上,采用N_2作为冷喷涂驱动气体,在TC4合金上制备TC4涂层,然后采用SEM、Image J图像分析软件、硬度计等分析已沉积涂层的孔隙率和硬度等性能。结果 25、400、500、600℃温度下,计算表明10μm的TC4合金粒子在TC4基板上的临界沉积速度分别为730、465、392、361 m/s,即随粒子温度升高,粒子临界沉积速度降低,粒子沉积成涂层更容易。采用冷喷涂工艺在TC4基板上沉积TC4涂层,在N_2温度600℃、气体压力3 MPa的条件下,制备的TC4涂层厚度约1000μm,与TC4钛合金基体结合紧密,涂层孔隙率约为6.46%。结论气体温度升高,粒子临界沉积速度降低;气体压强变大,制备的涂层厚度就大且更加致密。  相似文献   

12.
13.
冷喷涂Cu涂层过程中粒子速度的影响因素分析   总被引:4,自引:2,他引:4  
王佳杰  王吉孝  张颖  左文轩 《焊接》2005,(12):22-25
简要介绍了冷喷涂技术特点及工艺原理。利用粒子测速仪对各种因素下的粒子速度进行了测试;借助扫描电镜观察了涂层以及涂层与界面的形貌;具体讨论和分析了气体压力、温度、粉末以及喷涂距离等因素对颗粒速度的影响。  相似文献   

14.
As compared to thermal spray techniques, cold spraying allows to retain metastable phases of the feedstock material like amorphous structures, due to lower process gas temperatures. Compared to crystalline metals, metallic glasses are brittle at ambient temperature but viscous at higher temperatures. Therefore, cold spray parameters must be optimized for conditions that allow softening of the amorphous spray material for successfully producing coatings. For this study, a FeCoCrMoBC metallic glass was used that in comparison to others offers advantages with respect to higher hardness, less costly feedstock powder, and minimum reactivity with the environment. Necessary impact conditions were investigated to meet the window of deposition in cold gas spraying. According to calculations and cold spray experiments, neither the glass transition temperature T g nor the melting temperature T m can describe required conditions for bonding. Thus, a so called softening temperature between the glass temperature and the melting temperature had to be defined to calculate the critical velocity of metallic glasses. With respect to the bonding mechanism, impact morphologies could prove that a transition to viscous flow gets more prominent for harsher spray conditions. By sufficiently exceeding the critical condition for bonding, coatings with rather dense microstructures can be processed at deposition efficiencies of about 70%. The coatings have a hardness of 1100?HV 0.3, but the results also demonstrate that further work is still needed to explore the full potential for bulk metallic glasses.  相似文献   

15.
Aluminum powder of 99.7 wt.% purity and in the nominal particle size range of −75+15 μm has been sprayed onto a range of substrates by cold gas dynamic spraying (cold spraying) with helium, at room temperature, as the accelerating gas. The substrates examined include metals with a range of hardness, polymers, and ceramics. The substrate surfaces had low roughness (R a < 0.1 μm) before deposition of aluminum in an attempt to separate effects of mechanical bonding from other forms of bonding, such as chemical or metallurgical bonding. The cross-sectional area of a single track of aluminum sprayed onto the substrate was taken as a measure of the ease of initiation of deposition, assuming that once a coating had begun to deposit onto a substrate, its growth would occur at a constant rate regardless of substrate type. It has been shown that initiation of deposition depends critically upon substrate type. For metals where initiation was not easy, small aluminum particles were deposited preferentially to large ones (due to their higher impact velocities); these may have acted as an interlayer to promote further building of the coating. A number of phenomena have been observed following spraying onto various substrates, such as substrate melting, substrate and particle deformation, and evidence for the formation of a metal-jet (akin to that seen in explosive welding). Such phenomena have been related to the processes occurring during impact of the particles on the substrate. Generally, initiation of aluminum deposition was poor for nonmetallic materials (where no metallic bonding between the particle and substrate was possible) and for very soft metals (in the case of tin, melting of the substrate was observed). Metallic substrates harder than the aluminum particles generally promoted deposition, although deposition onto aluminum alloy was difficult due to the presence of a tenacious oxide layer. Initiation was seen to be rapid on hard metallic substrates, even when deformation of the substrate was not visible. The original version of this article was published as part of the ASM Proceedings, Thermal Spray 2003: Advancing the Sciences and Applying the Technology, International Thermal Spray Conference (Orlando, FL), May 5–8, 2003, Basil R. Marple and Christian Moreau, Ed., ASM International, 2003.  相似文献   

16.
Nanocrystalline Al−Mg coatings were produced using the cold gas dynamic-spraying technique. Unsieved Al−Mg powder of average nanocrystalline grain size in the range of 10 to 30 nm and with a particle size distribution from 10 to >100 μm was used as the feedstock powder. The resulting coatings were evaluated using scanning electron microscopy (SEM), transmission electron microscopy, as well as microhardness and nanoindentation measurements. Coating observations suggest that the wide particle size distribution of the feedstock powder has a detrimental effect on the coating quality but that it can be successfully mitigated by optimizing the spraying parameters. Nanohardness values close to 3.6 GPa were observed in both the feedstock powder and coatings, suggesting the absence of cold-working hardening effects during the process. The effects of the substrate surface roughness and thickness on coating quality were investigated. The deposited mass measurements performed on the coatings showed that the effect of using different grit sizes for the substrate preparation is limited to small changes in the deposition efficiency of only the first few layers of deposited material. The SEM observation showed that the substrate surface roughness has no significant effect on the macrostructures and microstructures of the coating. The ability to use the cold gas dynamic spraying process to produce coatings on thin parts without noticeable substrate damage and with the same quality as coatings produced on thicker substrates was demonstrated in this work. The original version of this paper was published in the CD ROM Thermal Spray Connects: Explore Its Surfacing Potential, International Thermal Spray Conference, sponsored by DVS, ASM International, and IIW International Institute of Welding, Basel, Switzerland, May 2–4, 2005, DVS-Verlag GmbH, Düsseldorf, Germany.  相似文献   

17.
冷喷涂由于具有粉末加热温度低、涂层中氧含量及孔隙率较常规热喷涂涂层显著降低等特点,而广泛应用于制备各种类型的涂层或块体材料。近年来,冷喷涂设备及工艺的改善使其在增材制造和零件修复方面也具有极大的应用前景。综述了冷喷涂制备高性能软质相金属和硬质相金属/非金属涂层的研究进展,重点围绕原始颗粒结构、冷喷涂工艺参数、添加第二相和后处理手段对涂层制备及性能优化的效果进行总结,并对冷喷涂制备复合涂层的结合机理进行了阐述,包括软质相颗粒形成单一涂层和添加硬质相颗粒复合涂层的结合机理,且涂层中颗粒之间的结合主要为机械结合、物理结合、冶金结合和化学结合中的一种或多种结合形式。同时,介绍了冷喷涂技术在增材制造领域和零件修复方面的研究进展和存在的问题。最后,分析总结了冷喷涂的应用前景和存在的问题。  相似文献   

18.
Impact of high velocity cold spray particles   总被引:13,自引:0,他引:13  
This article presents experimental data and a computational model of the cold spray solid particle impact process. Copper particles impacting onto a polished stainless steel substrate were examined in this study. The high velocity impact causes significant plastic deformation of both the particle and the substrate, but no melting was observed. The plastic deformation exposes clean surfaces that, under the high impact pressures, result in significant bond strengths between the particle and substrate. Experimental measurements of the splat and crater sizes compare well with the numerical calculations. It was shown that the crater depth is significant and increases with impact velocity. However, the splat diameter is much less sensitive to the impact velocity. It was also shown that the geometric lengths of the splat and crater scale linearly with the diameter of the impacting particle. The results presented will allow a better understanding of the bonding process during cold spray.  相似文献   

19.
冷喷涂沉积机理及其装备的研究进展   总被引:7,自引:6,他引:1  
冷喷涂是近几年基于空气动力学发展起来的新型表面改性技术。冷喷涂技术在较低的温度下进行,相比热喷涂有很多优势,成为研制开发非晶、纳米及其他温度敏感材料的有效手段,在工业及国防领域有着重要的应用前景和价值。简要介绍了冷喷涂技术的原理、特点以及在保护涂层、功能涂层、近净成形、零件修复等方面的应用。涂层沉积机理的研究对冷喷涂技术的研究具有重要的理论意义,对工艺参数的优化以及优质涂层的制备具有重要的指导作用。冷喷涂装备对涂层质量和喷涂效率的提高至关重要。冷喷涂装备使冷喷涂技术的研究从理论研究到实验研究过渡,最终由实验室研究向工业应用过渡。详细阐述了冷喷涂涂层沉积机理及其研究进展。系统阐述了冷喷涂装备(真空冷喷涂、激光辅助冷喷涂、脉冲气体冷喷涂、激波风洞冷喷涂等)的工作原理及研究现状。  相似文献   

20.
The effects of commercially pure titanium particle morphology (spherical, sponge, and irregular) and size distributions (mean particle sizes of 20-49 μm) on the cold spray process and resulting coating properties were investigated. Numerous powder and coating characterizations were performed including: powder oxygen and nitrogen contents, powder flowability, powder compressibility, coating microhardness, coating porosity, LOM/SEM analyses, and XRD. Compared to spherical powders, the sponge and irregular CP-Ti powders had higher oxygen content, poorer powder flowability, higher compression ratio, lower powder packing factor, and higher average particle impact velocities. XRD results showed no new phases present when comparing the various feedstock powders to corresponding coatings. A higher particle temperature was also obtained with larger particle size for all feedstock powder morphologies processed with the same set of spray parameters. A spherical powder with 29 μm mean particle size was found to have the lowest porosity coating and best cold sprayability. The relationships of several as-cold sprayed coating characteristics to the ratio of particle impact and critical velocities were also discussed.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号