首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Decimation and interpolation are very common multirate signal processing operations. Conventional decimation or interpolation technique using polyphase filters has the advantage that for a given transition-band sharpness, the filter's computational complexity decreases with increasing interpolation or decimation factor. Nevertheless, if the transition band of the decimation or interpolation filter is very sharp, the complexity of the filter may still be very high. The complexity of a very sharp filter may be reduced using the frequency-response masking (FRM) technique. However, as shown in this paper, for a given transition-band sharpness, the computational complexity of the classical FRM method does not reduce as rapidly as the increase in decimation or interpolation factor. In this paper, we present a novel variant of the FRM technique for interpolation or decimation application. In this new variant, the computational complexity reduces as rapidly as the interpolation or decimation factor increases. The reduction in computational complexity increases with decreasing transition width. Over an order of magnitude reduction in computational complexity is achieved when compared with conventional polyphase approach in a particular example presented in this paper.  相似文献   

2.
Two efficient techniques exploiting the frequency-response masking (FRM) approach are proposed in order to make it feasible to design prototype filters for highly selective nearly perfect-reconstruction cosine-modulated transmultiplexers and filter banks (CMTs and CMFBs) having a very large number of channels. In these design schemes, the number of unknowns is drastically reduced when compared with the corresponding techniques for designing direct-form prototype filters. Furthermore, in the proposed techniques, the main figures of merits, that is, the intersymbol interference and the interchannel interference for CMTs and the overall and aliasing distortions for CMFBs are taken into account in a controlled manner. In order to speed up the convergence of these two optimization techniques, simplifications for computing the resulting nonlinear constraints and the corresponding gradient vectors are proposed. They differ from each other in the sense that the first and second ones utilize the frequency-domain and time-domain constraints for controlling the figures of merit, respectively. Combining these two techniques results in numerically efficient algorithms for designing optimized CMTs (or CMFBs) with a reduced computational complexity (number of arithmetic operations per output sample), particularly when both branches of the FRM structure are required. Design examples are included illustrating the efficiency of the design methods and the high performance of the resulting CMT structures.  相似文献   

3.
Modern wireless communications gadgets demand multi-standard communications facilities with least overlap between different input radio channels. A sharp digital filter of extremely narrow transition-width with lower stop band ripples offers alias-free switching among the preferred frequency bands. A computationally competent low pass filter (LPF) structure based on the multistage frequency response masking (FRM) approach is proposed for the design of sharp finite impulse response (FIR) filters which are suitable for wireless communications applications. In comparison of basic FRM with other existing multistage FRM structures, the proposed structure has a narrow transition bandwidth and higher stop band attenuation with significant reduction in terms of the number of computational steps. A design example is incorporated to demonstrate the efficiency of the proposed approach. Simulation results establish the improvement of the proposed scheme over other recently published design strategies.  相似文献   

4.
The introduction of nonlinear optimization techniques to the design of a frequency-response masking (FRM) filter has changed the way in which an FRM filter is synthesized. It allows all subfilters in an FRM structure to be optimized jointly, resulting in further savings in the number of arithmetic operations. Under the joint optimization, a new set of design equations is necessary, not only for a more computationally efficient filter, but also for the simplification of the design process and the reduction of the design time. In this paper, we present a set of design equations that estimates the filter lengths and optimum interpolation factor in an FRM filter under joint optimization. It is shown, by means of examples, that the proposed design equations lead to a better estimation of the optimum interpolation factor compared with existing design equations.  相似文献   

5.
该文在分析滤波器传递函数的对称性与其冲激响应的关系的基础上,提出了一类具有稀疏冲激响应系数的特殊滤波器,以这类滤波器作为原型滤波器可以进一步降低FRM结构FIR滤波器的计算复杂度。并研究了基于此类FRM结构FIR滤波器的采样率变换算法、实现结构、计算复杂度及其设计问题等。最后,通过实际例子验证这种采样率变换方法的有效性。  相似文献   

6.
In the frequency-response masking (FRM) approach, the complexity of two masking filters is heavily dependent on the interpolation factor and the cutoff frequencies of the bandedge shaping filter. In this paper, we propose a novel structure that decouples the masking filters from the bandedge shaping filter. The design equations together with the design procedures are presented. With the introduction of an additional decoupling stage, the complexity of the overall filter can be greatly reduced. Our example shows that more than 40% savings in the numbers of multipliers and adders can be achieved compared with the original FRM approach.  相似文献   

7.
介绍了频率响应屏蔽(FRM)技术在采样率变换技术中的应用,分析了FRM的简化结构——内插滤波器的设计方法。将此滤波器应用于采样率变换中,并结合多相滤波思想提出了一种高效的FRM采样率变换结构,此结构能极大降低采样率变换实现复杂度。最后通过设计实例,验证了此结构的高效性。  相似文献   

8.
设计窄过渡带FIR滤波器的一种非常有效的方法是采用频率响应屏蔽技术(FRM).但是如果过渡带要求过窄,经典FRM滤波器各子滤波器的阶数会变得很高.据此,本文提出一种可变带宽镜像半带滤波FRM滤波新结构,通过增加两个镜像半带滤波器,将原型滤波器及其互补滤波器的镜像分别分成奇偶两部分,使得原型滤波器和屏蔽滤波器的设计更加灵活,并降低了滤波器的计算复杂度,达到了设计高效窄过渡带滤波器的目的.理论分析和实例均验证了该结构的有效性.  相似文献   

9.
A design procedure for frequency-response masking (FRM) prototype filters of cosine-modulated filter banks (CMFBs) is proposed. In the given method, we perform minimization of the maximum attenuation level in the filters stopband, subject to intersymbol interference (ISI) and intercarrier interference (ICI) constraints. For optimization, a quasi-Newton algorithm with line search is used, and we provide simplified analytical expressions to impose the interference constraints, which greatly reduce the computational complexity of the optimization procedure. The result is lower levels of ISI and ICI for a predetermined filter order, or a reduced filter complexity for given levels of interferences. It is then illustrated how the FRM-CMFB structure is suitable for implementing filter banks with a large number of bands, yielding sharp transition bands and small roll-off factors, which is an attractive feature for a wide range of practical applications.  相似文献   

10.
A very efficient technique to drastically reduce the number of multipliers and adders in narrow transition-band linear-phase finite-impulse response digital filters is to use the one-stage or multistage frequency-response masking (FRM) approach, which has been originally introduced by Lim and further improved by Lim and Lian. In these original synthesis techniques, the subfilters in the overall implementation are separately designed. As shown earlier by the authors of this contribution together with Johansson, the arithmetic complexity in one-stage FRM filter designs can be considerably reduced by using the following two-step technique for simultaneously optimizing all the subfilters. First, a suboptimal solution is found by using a simple design scheme. Second, this solution is used as a start-up solution for further optimization, which is carried out with the aid of an efficient nonlinear optimization algorithm. This paper exploits this approach to synthesizing multistage FRM filters. An example taken from the literature illustrates that both the number of multipliers and the number of adders for the resulting optimized multistage FRM filters are approximately 70 percent compared with those of the filters synthesized using the original multistage FRM filter design schemes. Additional examples are included in order to show the benefits provided by the proposed synthesis scheme over other recently published design techniques, in terms of an improved performance of the resulting solution, a higher accuracy of the solution, and a faster speed required to arrive at the best solution.  相似文献   

11.
Software defined radio (SDR) is emerging as a powerful platform for future generation cellular systems, due to its capability to operate conforming to multiple mobile radio standards. Channelizer in an SDR operates at the highest sampling rate and hence a low complexity design is needed for the most computationally intensive part of the SDR receiver. The channel filters in the channelizer extracts radio channels of varying bandwidths, corresponding to various communication standards from the wideband input signal. An architecture for implementing low complexity, low power and reconfigurable channel filter for the SDR mobile handsets, based on multi-stage frequency response masking (FRM) is proposed in this paper. The proposed architecture is unique in a way that it is able to effectively exploit the redundancy in multi-stage realization by utilizing the common masking filters and also capable of extracting varying bandwidth channels. Design examples show that the proposed architecture offers 47.5% complexity reduction and 18.1% power reduction over single-stage FRM approach.  相似文献   

12.
This paper introduces two classes of frequency-response masking (FRM) linear-phase finite (length) impulse response (FIR) filters for interpolation and decimation by arbitrary integer factors M. As they are based on the FRM approach, the proposed filters are low-complexity (efficient) sharp-transition linear-phase FIR interpolation and decimation filters. Compared to previously existing FRM linear-phase FIR filter classes for interpolation and decimation, the new ones offer lower complexity and more freedom in selecting the locations of the passband and stopband edges. Furthermore, the proposed classes of FRM filters can, as special cases, realize efficient Mth-band FRM linear-phase FIR interpolation and decimation filters for all values of M. Previously, only half-band (M = 2) FRM linear-phase FIR filters have appeared in the literature. The paper includes design techniques suitable for the new filters and design examples illustrating their efficiency.  相似文献   

13.
An elliptic approximation-based design approach is proposed for obtaining 2-D recursive fan filters. The 1-D elliptic filter is reduced to a cascade-parallel combination of all-pass sections and is then used as a prototype for fan filter synthesis, resulting in final realization of 2-D transfer functions using allpass filters. It is shown that the synthesis procedure not only gives a filter that has far fewer coefficients but also enjoys a very low computational complexity  相似文献   

14.
In this paper, we propose a method for designing a class of M‐channel, causal, stable, perfect reconstruction, infinite impulse response (IIR), and parallel uniform discrete Fourier transform (DFT) filter banks. It is based on a previously proposed structure by Martinez et al. [1] for IIR digital filter design for sampling rate reduction. The proposed filter bank has a modular structure and is therefore very well suited for VLSI implementation. Moreover, the current structure is more efficient in terms of computational complexity than the most general IIR DFT filter bank, and this results in a reduced computational complexity by more than 50% in both the critically sampled and oversampled cases. In the polyphase oversampled DFT filter bank case, we get flexible stop‐band attenuation, which is also taken care of in the proposed algorithm.  相似文献   

15.
针对FIR滤波器设计中锐截止宽带滤波器阶数较高、计算复杂的问题,提出用频率掩蔽法,先设计一个过渡带为目标过渡带的L倍的原型滤波器,其实现复杂度远小于所要求的滤波器,依据L倍内插滤波器的过渡带宽是原型滤波器的1/L的原理,利用一对互补滤波器和掩蔽滤波器,得到了较低计算复杂度的锐截止宽带滤波器。  相似文献   

16.
The frequency-response masking (FRM) approach has been introduced as a means of generating narrow transition band linear-phase finite impulse response (FIR) filters with a low arithmetic complexity. This paper proposes an approach for synthesizing two-channel maximally decimated FIR filter banks utilizing the FRM technique. For this purpose, a new class of FRM filters is introduced. Filters belonging to this class are used for synthesizing nonlinear-phase analysis and synthesis filters for two types of two-channel filter banks. For the first type, there exist no phase distortion and aliasing errors, but this type suffers from a small amplitude distortion as for the well-known quadrature mirror filter (QMF) banks. Compared to conventional QMF filter banks, the proposed banks lower significantly the overall arithmetic complexity at the expense of a somewhat increased overall filter bank delay in applications demanding narrow transition bands. For the second type, there are also small aliasing errors, allowing one to reduce the arithmetic complexity even further. Efficient structures are introduced for implementing the proposed filter banks, and algorithms are described for maximizing the stopband attenuations of the analysis and synthesis filters in the minimax sense subject to the given allowable amplitude and/or aliasing errors. Examples are included illustrating the benefits provided by the proposed filter banks.  相似文献   

17.
The channelizer in a software defined radio (SDR) base station extracts individual radio channels from the digitized wideband input signal at a very high sampling rate. The base station channelizer must be able to simultaneously extract multiple channels of non-uniform bandwidths corresponding to channel bandwidths of different communication standards. Reconfigurability and low complexity are the two key requirements in the SDR channelizer. A new reconfigurable filter bank (FB) architecture based on interpolation and masking technique for SDR channelizers is proposed in this paper. The proposed FB can be used for obtaining very narrow passband channels with extremely low complexity. Using a cascaded structure of the proposed FB, it is possible to extract channels of fractional passband widths by changing the interpolation factor. Design example shows that the proposed FB offers complexity reduction of 84% over the conventional per-channel (PC) approach. The proposed FB has been implemented and tested on Xilinx Virtex 2v3000ff1152-4 FPGA. Implementation results show that the proposed FB offers area reduction of 48.37%, speed improvement of 52.7% and power reduction of 75.9% over the PC approach.  相似文献   

18.
A new method to reduce the number of arithmetic operations in a sharp FIR filter synthesized by the frequency-response masking (FRM) technique is presented. The success of the proposed method is based on a modified FRM approach where the subfilters in the FRM approach are implemented by using recently introduced prefilter-equalizer based filters. It is shown, by means of examples, that the proposed method yields considerable savings in the numbers of multipliers and adders compared to the original single-stage FRM approach.  相似文献   

19.
Low complexity and reconfigurability are two key requirements of channel filters in a software defined radio receiver. A new reconfigurable architecture based on frequency response masking (FRM) technique for the implementation of channel filters is proposed in this paper. Our architecture offers reconfigurability at filter and architecture levels, in addition to the inherent low complexity offered by the FRM technique. The proposed reconfigurable filter has been synthesized on 0.18- CMOS technology and implemented and tested on Virtex-II 2v3000ff1152-4 field-programmable gate array. Synthesis results show that the proposed channel filter offers average area and power reductions of 53.6% and 57.6%, respectively ,with average improvement in speed of 47.6% compared to other reconfigurable filters in literature.  相似文献   

20.
This paper presents a technique for applying Fast FIR Algorithms (FFAs) to interpolation and decimation filters. In the event that the prototype filter has a symmetric impulse response, it is shown that the subfilters which result from the application of the FFA will be jointly symmetric. This fact may be exploited in order to further reduce the computational complexity of the system. The effect of transposition upon the proposed structure is discussed, and it is shown that transposition yields a more economical structure in the case of a decimation filter. The computational complexity of the proposed schemes is shown to compare favorably with that of the standard parallel filtering approach.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号