首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 109 毫秒
1.
Intrusion detection is one of the most important applications of wireless sensor networks. When mobile objects are entering into the boundary of a sensor field or are moving cross the sensor field, they should be detected by the scattered sensor nodes before they pierce through the field of sensor (barrier coverage). In this paper, we propose an energy efficient scheduling method based on learning automata, in which each node is equipped with a learning automaton, which helps the node to select best node to guarantee barrier coverage, at any given time. To apply our method, we used coverage graph of deployed networks and learning automata of each node operates based on nodes that located in adjacency of current node. Our algorithm tries to select minimum number of required nodes to monitor barriers in deployed network. To investigate the efficiency of the proposed barrier coverage algorithm several computer simulation experiments are conducted. Numerical results show the superiority of the proposed method over the existing methods in term of the network lifetime and our proposed algorithm can operate very close to optimal method.  相似文献   

2.
Song  Zhengqiang  Hao  Guo 《Wireless Networks》2022,28(6):2743-2754

The method for optimal allocation of network resources based on discrete probability model is proposed. In order to take into account multiple coverage of the monitored points, the method constructs the discrete probability perception model of the network nodes. The model is introduced into the solution of the node coverage area, and the optimized parameters of the sensor optimization arrangement are used to optimize the layout of the multimedia sensor nodes. After setting the node scheduling standard, the interaction force between the sensor nodes and the points on the curve path is analyzed by the virtual force analysis method based on the discrete probability model At the same time On this basis, the path coverage algorithm based on the moving target is used to optimize the coverage of the wireless sensor network node in order to achieve optimal configuration of network resources. The experimental results show that the proposed method has good convergence and can complete the node coverage process in a short time. The introduction of the node selection criteria and the adoption of the dormant scheduling mechanism greatly improve the energy saving effect and enhance the network resource optimization effect.

  相似文献   

3.
Node scheduling in wireless sensor networks (WSNs) plays a vital role in conserving energy and lengthening the lifetime of networks, which are considered as prime design challenges. In large-scaled WSNs, especially where sensor nodes are deployed randomly, 100 % coverage is not possible all the times. Additionally, several types of applications of WSNs do not require 100 % coverage. Following these facts, in this paper, we propose a coverage based node scheduling algorithm. The algorithm shows that by sacrificing a little amount of coverage, a huge amount of energy can be saved. This, in turns, helps to increase the lifetime of the network. We provide mathematical analysis, which verifies the correctness of the proposed algorithm. The proposed algorithm ensures balanced energy consumption over the sensor networks. Moreover, simulation results demonstrate that the proposed algorithm almost doubles the lifetime of a wireless sensor network by sacrificing only 5–8 % of coverage.  相似文献   

4.
在无线传感器网络中,设计合理的节点调度算法是提高网络感知能力、降低系统能耗的关键。在分析节点能耗模型的基础上,针对移动目标跟踪型网络应用,提出一种高能效的无线传感器网络自适应节点调度算法ANSTT。该算法根据节点对移动目标的感知能力,以及节点的相对剩余能量水平,自动调整节点工作模式。仿真实验表明,ANSTT算法在维持低感知延时、高目标感知率的同时,可有效降低系统能耗,延长网络寿命。  相似文献   

5.
针对有向传感器网络中的时空覆盖调度问题进行研究,从有向传感器节点感知模型出发,设计了基于网格划分的网络基本区域生成方法,在此基础上提出了节点最大覆盖调度迭代选择MaxGreedy算法.通过仿真实验验证了网格划分方法的有效性,设计了一系列的时空覆盖算法对比实验,深入评估MaxGreedy算法的性能.对比试验结果表明,MaxGreedy算法可以高效地生成网络的节点调度模式,并在一定程度上提高网络的时空覆盖率.  相似文献   

6.

The fundamental challenge for randomly deployed resource-constrained wireless sensor network is to enhance the network lifetime without compromising its performance metrics such as coverage rate and network connectivity. One way is to schedule the activities of sensor nodes and form scheduling rounds autonomously in such a way that each spatial point is covered by at least one sensor node and there must be at least one communication path from the sensor nodes to base station. This autonomous activity scheduling of the sensor nodes can be efficiently done with Reinforcement Learning (RL), a technique of machine learning because it does not require prior environment modeling. In this paper, a Nash Q-Learning based node scheduling algorithm for coverage and connectivity maintenance (CCM-RL) is proposed where each node autonomously learns its optimal action (active/hibernate/sleep/customize the sensing range) to maximize the coverage rate and maintain network connectivity. The learning algorithm resides inside each sensor node. The main objective of this algorithm is to enable the sensor nodes to learn their optimal action so that the total number of activated nodes in each scheduling round becomes minimum and preserves the criteria of coverage rate and network connectivity. The comparison of CCM-RL protocol with other protocols proves its accuracy and reliability. The simulative comparison shows that CCM-RL performs better in terms of an average number of active sensor nodes in one scheduling round, coverage rate, and energy consumption.

  相似文献   

7.
Sleep scheduling with expected common coverage in wireless sensor networks   总被引:1,自引:0,他引:1  
Sleep scheduling, which is putting some sensor nodes into sleep mode without harming network functionality, is a common method to reduce energy consumption in dense wireless sensor networks. This paper proposes a distributed and energy efficient sleep scheduling and routing scheme that can be used to extend the lifetime of a sensor network while maintaining a user defined coverage and connectivity. The scheme can activate and deactivate the three basic units of a sensor node (sensing, processing, and communication units) independently. The paper also provides a probabilistic method to estimate how much the sensing area of a node is covered by other active nodes in its neighborhood. The method is utilized by the proposed scheduling and routing scheme to reduce the control message overhead while deciding the next modes (full-active, semi-active, inactive/sleeping) of sensor nodes. We evaluated our estimation method and scheduling scheme via simulation experiments and compared our scheme also with another scheme. The results validate our probabilistic method for coverage estimation and show that our sleep scheduling and routing scheme can significantly increase the network lifetime while keeping the message complexity low and preserving both connectivity and coverage.  相似文献   

8.
针对无线传感网预覆盖过程中存在覆盖盲区以及数据频繁重传而导致的节点覆盖抑制现象,提出了一种基于拨备满足模型的无线传感网网络覆盖算法。设计一种新的无线传感网节点覆盖模型,并构建覆盖指数、覆盖强度、覆盖均衡评估系数等评估维度,快速评估节点覆盖质量。再计算覆盖均衡评估系数,并采用拨备模型优化覆盖质量,确定覆盖性能优越的备用工作节点。随后,基于覆盖相似性原则评估工作节点覆盖性能,设计了节点首次覆盖评估方法,按节点移动路径依次评估覆盖指数统计均值,并根据目标节点进入覆盖区域的先后,逐次激活性能最佳的工作节点进行监测。仿真实验表明:与当前无线传感网常数节点覆盖方案相比,所提方案具有更高的网络覆盖率、更短的覆盖启动时间和更少的工作节点数目。  相似文献   

9.
With the fast development of the micro-electro-mechanical systems(MEMS),wireless sensor networks(WSNs)have been extensively studied.Most of the studies focus on saving energy consumption because of restricted energy supply in WSNs.Cluster-based node scheduling scheme is commonly considered as one of the most energy-efficient approaches.However,it is not always so efficient especially when there exist hot spot and network attacks in WSNs.In this article,a secure coverage-preserved node scheduling scheme for WSNs based on energy prediction is proposed in an uneven deployment environment.The scheme is comprised of an uneven clustering algorithm based on arithmetic progression,a cover set partition algorithm based on trust and a node scheduling algorithm based on energy prediction.Simulation results show that network lifetime of the scheme is 350 rounds longer than that of other scheduling algorithms.Furthermore,the scheme can keep a high network coverage ratio during the network lifetime and achieve the designed objective which makes energy dissipation of most nodes in WSNs balanced.  相似文献   

10.
为了降低无线传感器网络监测区域节点能耗和延长网络生命周期,设计了一种基于改进微粒群算法的节点调度方法.首先,以网络覆盖率和休眠工作节点数为目标建立了系统的数学模型,然后设计了粒子的编码方式、适应度函数以及自适应动态惯性权重,并定义了使用改进的微粒群算法对传感器网络节点调度的具体算法.仿真实验表明,该方法能正确地实现无线传感器网络监测区域的节点调度,在迭代次数较少时,就能以较少的节点获得较高的网络覆盖率,且与其他方法相比,具有收敛速度快和全局寻优能力强的优点.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号