首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
过晓冰  刘敏 《中国通信》2012,9(6):36-44
Delay-Tolerant Networks ( DTNs ) are wireless networks that often experience temporary, even long-duration partitioning. Current DTN researches mainly focus on pure delay-tolerant networks that are extreme environments within a limited application scope. It motivates the identification of a more reasonable and valuable DTN architecture, which can be applied in a wider range of environments to achieve interoperability between some networks suffering from frequent network partitioning, and other networks provided with stable and high speed Internet access. Such hybrid delay-tolerant networks have a lot of applications in real world. A novel and practical Cache-Assign-Forward (CAF) architecture is proposed as an appropriate approach to tie together such hybrid networks to achieve an efficient and flexible data communication. Based on CAF, we enhance the existing DTN routing protocols and apply them to complex hybrid delay-tolerant networks. Simulations show that CAF can improve DTN routing performance significantly in hybrid DTN environments.  相似文献   

2.
动态QoS多播路由协议   总被引:24,自引:0,他引:24       下载免费PDF全文
李腊元  李春林 《电子学报》2003,31(9):1345-1350
本文主要研讨了具有QoS约束的动态多播路由问题.文中描述了一种适用于QoS多播路由的网络模型,提出了一种动态QoS多播路由协议(DQMRP),该协议能操作在单播路由协议的顶层,它只要求网络链路(或节点)的局部状态信息,不需要维护全局状态信息.DQMRP可有效地减少构造一棵多播树的开销,多播组成员可动态地加入/退出多播会晤.该协议可搜索多条可行树枝,并能选择一条最优(或近优)树枝将新成员连接到多播树.文中给出了DQMRP的正确性证明和复杂性分析,并通过仿真实验验证了该协议的可用性和有效性.  相似文献   

3.
Group communication services typically generate large multicast data streams. Delivering such massive data streams to the end system nodes at the edge of the Internet has been a challenging problem in terms of high stress on the network links and high demand on network resources and routing node capacities. Most of existing research has been dedicated on geo-distance based routing with various optimizations to alleviate the performance impact on geo-distance based routing due to unpredictable network dynamics. Most representative techniques are targeted at reducing the delivery path length or optimizing routing path by utilizing network locality. In this paper, we identify the inefficiency of geo-distance based routing protocols in many existing multicast overlay networks in terms of both resource utilization and group communication efficiency. To address this issue, we develop a utility-based routing scheme (UDR) that can provide efficient group communication services in a decentralized geographical overlay network. Our approach makes three unique contributions. First, we introduce a utility function to refine the geo-distance based routing in such a way that the routing path selection can carefully incorporate both geo-distance based metric and the network latency. Second, we enhance our utility driven routing scheme with self-adaptive capability by considering the nodes?? state and network density. Thus, nodes in the multicast network can dynamically accommodate the changes of network conditions based solely on their local knowledge about the network. Third, we devise a suite of optimization techniques to minimize the maintenance cost and computational complexity of our self-adaptive and utility-drive routing scheme. We evaluate our approach through extensive experiments based on a realistic network topology model and show that the UDR method is highly scalable and it effectively enhances the multicast delivery efficiency for large scale group communication services compared to existing geo-distance based routing protocols.  相似文献   

4.
Scalable Multicasting: The Core-Assisted Mesh Protocol   总被引:2,自引:0,他引:2  
Most of the multicast routing protocols for ad hoc networks today are based on shared or source-based trees; however, keeping a routing tree connected for the purpose of data forwarding may lead to a substantial network overhead. A different approach to multicast routing consists of building a shared mesh for each multicast group. In multicast meshes, data packets can be accepted from any router, as opposed to trees where data packets are only accepted from routers with whom a tree branch has been established. The difference among multicast routing protocols based on meshes is in the method used to build these structures. Some mesh-based protocols require the flooding of sender or receiver announcements over the whole network. This paper presents the Core-Assisted Mesh Protocol, which uses meshes for data forwarding, and avoids flooding by generalizing the notion of core-based trees introduced for internet multicasting. Group members form the mesh of a group by sending join requests to a set of cores. Simulation experiments show that meshes can be used effectively as multicast routing structures without the need for flooding control packets.  相似文献   

5.
An important problem in both wireless and wired communication networks is to be able to efficiently multicst information to a group of network sites. Multicasting reduces the transmission overhead of both wireless and wired networks and the time it takes for all the nodes in the subset to receive the information. Since transmission bandwidth is a scarce commodity especially in wireless networks, efficient and near minimum-cost multicast algorithms are particularly useful in the wireless context. In this paper, we discuss methods of establishing efficient and near minimum-cost multicast routing in communication networks. In particular, we discuss an efficient implementation of a widely used multicast routing method which can construct a multicast tree with a cost no greater than twice the cost of an optimal tree. We also present two efficient multicast tree constructions for a general version of the multicast routing problem in which a network consists of different classes of nodes, where each class can have one or more nodes of the same characteristic which is different from the characteristics of nodes from other classes. Because of their efficient running times, these multicast routing methods are particularly useful in the mobile communication environments where topology changes will imply recomputation of the multicast trees. Furthermore, the proposed efficient and near minimum-cost multicast routing methods are particularly suited to the wireless communication environments, where transmission bandwidth is more scarce than wired communication environments.Partially supported by NSF/LaSER under grant number EHR-9108765, by LEQSF grant number 94-RD-A-39, by NASA under grant number NAG 5-2842.  相似文献   

6.
DTN中概率选择的散发等待路由   总被引:1,自引:0,他引:1  
张迪  王贵竹 《通信技术》2010,43(5):145-147
目前的Internet体系结构和许多协议无法很好地适应延迟较高和间歇性链接的网络,这些网络有它们自己的专有协议,即聚束层协议,而不采用TCP/IP协议。为了实现这样的网络之间的互联,国际上提出了一种在端到端链接和节点资源都受限的新型网络体系和应用接口,即容迟网络(DTN)。文中主要讨论DTN网络的路由算法,在DTN路由算法中,蔓延路由和概率路由能提供较高的报文投递率,较小的投递延迟,但是开销很大。散发等待路由虽然具有较小的开销,但是投递率低、延迟较大,提出了投递效用的概念。在融合概率选择路由和散发等待路由的基础上,提出了具有概率选择的散发等待路由。通过仿真,与其它已有算法相比,显著提高了报文投递效用。  相似文献   

7.
Most existing algorithms for the problem of optical signal splitter placement or multicast splitting-capable node placement in a WDM network are based on the performance of attempting a large set of randomly generated multicast sessions in the network. Experiments show that placement of multicast capable nodes based on their importance for routing one set of multicast sessions may not be a right choice for another set of multicast sessions. In this work, we propose placement algorithms that are based on network topology and the relative importance of a node in routing multicast sessions, which is measured by our proposed metrics. Since a network topology is fixed once given, the proposed algorithms are essentially network traffic independent. We evaluate the proposed placement algorithms given static sets of multicast sessions as well as under dynamic traffic conditions, which are routed using our splitter constrained multicast routing algorithm. Our results show that the proposed algorithms perform better, compared to existing algorithms.  相似文献   

8.
Multicasting is growing in importance as new multimedia applications are devised. Throughout this article, multicasting is understood as the efficient multipoint-to-multipoint transmission of information (in terms of network resource consumption) between the members of a group. Most multicast services have been designed up to now to work over connectionless environments. The approach adopted by connection-oriented networks has been to try to imitate these connectionless multicast schemes with the aim of supporting IP multicast or network-layer broadcast. However, these solutions present drawbacks in terms of delay or signaling overhead. The goal of native ATM multicasting is to provide multicast communications support by taking into account the characteristics of ATM. Therefore, the design philosophy of multicast must be rethought by making it more suitable for connection-oriented networks. Native ATM multicasting is based on mechanisms implemented at the switches to allow the correct ATM-layer multicast forwarding of information. These mechanisms seek to avoid the delay and signaling problems of current solutions, e.g., LAN emulation and IP multicast over ATM. This article provides a survey of the literature on the strategies that offer multicast communications in ATM environments, with special stress on native ATM multicast forwarding mechanisms. Other aspects, such as signaling, quality of service, traffic control, and routing, are not addressed in detail in this article.  相似文献   

9.
Wang  Weitao  Bai  Yuebin  Feng  Peng  Huang  Jun  Sha  Mo  Tantai  Jianpei 《Wireless Personal Communications》2021,118(1):575-598

In delay-tolerant networks (DTNs), intermittent network connectivity and lack of global system information pose serious challenges to achieve effective data forwarding. Most state-of-the-art DTN routing algorithms are based on hill-climbing heuristics in order to select the best available next hop to achieve satisfactory network throughput and routing efficiency. An adverse consequence of this approach is that a small subset of good users take on most of the forwarding tasks. This can quickly deplete scarce resources (e.g. storage, battery, etc.) in heavily utilized devices which degrades the network reliability. A system with a significant amount of traffic carried by a small number of users is not robust to denial of service attacks and random failures. To overcome these deficiencies, this paper proposes a new routing algorithm, DTN-Balance, that takes the forwarding capacity and forwarding queue of the relay nodes into account to achieve a better load distribution in the network. For this, we defined a new routing metric called message forwarding utility combining nodal available bandwidth and forwarding workload. Applying small world theory, we impose an upper bound on the end-to-end hop count that results in a sharp increase in routing efficiency. Queued messages in a forwarding node are arranged by DTN-Balance based on message dropping utility metric for a more intelligent decision in the case of a message drop. The performance of our method is compared with that of the existing algorithms by simulations on real DTN traces. The results show that our algorithm provides outstanding forward efficiency at the expense of a small drop in the throughput.

  相似文献   

10.
Delay Tolerant Networks (DTNs) provide a communications infrastructure for environments lacking continuous connectivity. Such networks rely on the mobility of nodes and the resulting opportunistic connections to carry messages from source to destination. Unfortunately, exchanging packets with an arbitrary intermediary node makes privacy difficult to achieve in these systems as any adversary can easily act as an intermediary and determine the sender and receiver of a message. In this paper, we present ARDEN, an anonymous communication mechanism for DTNs based on a modified onion routing architecture. Instead of selecting specific nodes through which messages must pass as is traditionally done in onion routing, ARDEN uses Attribute-Based Encryption (ABE) to specify and manage groups that may decrypt and forward messages. Through simulation, we show that this approach not only increases throughput and reduces end-to-end latency over traditional onion routing techniques, but also adds minimal overhead when compared to DTN routing protocols that do not provide anonymity guarantees. Through this, we show that ARDEN is an effective solution for anonymous communication in intermittently connected networks such as DTNs.  相似文献   

11.
Disruption‐tolerant network (DTN) implementation is subject to many routing constraints like limited knowledge of the network and intermittent connections with no end‐to‐end path existence. In this paper, the researchers propose trusted‐cluster–based routing protocol (TCR) for routing in DTN. TCR uses the experiential learning model that integrates neural network‐based bipolar sigmoid activation function to form trusted‐cluster DTN. TCR works in two phases: firstly to form a trusted‐cluster and secondly to identify cluster heads to direct network traffic through them. After the formation of the trusted‐cluster, a cluster head is chosen for a set period, thus instigating stability in the network. These trust values are attached to the node's route cache to make competitive routing decisions by relaying a message to the other trusted intermediate nodes only. With negative trust value, any node is deprived of participation in the network. This way, TCR eliminates malicious or selfish nodes to participate in the DTN network and minimizes the number of messages forwarded in a densely populated DTN. Also, this implementation conserves sufficient buffer memory to reach the destined node. The TCR's performance with other DTN routing schemes, namely, epidemic and trust‐based routing, is compared using multiple simulations runs. The proposed work is verified using mobility traces from Community Resource for Archiving Wireless Data At Dartmouth, and the experimental result shows the elimination of selfish nodes participating in the DTN. The simulation result shows an increase of 19% in message delivery by forwarding only to a trusted intermediate node possible.  相似文献   

12.
In this paper, we investigate the dynamic multicast routing problem for single rate loss network and briefly discuss the dynamic multicast routing algorithm called least load multicast routing (LLMR). We propose a new multicast routing algorithm called maximum mean number of new calls accepted before blocking multicast routing (MCBMR), which can more accurately capture the current and future loading of a network. Simulation results show that this algorithm, compared with LLMR, not only has a smaller network revenue loss, but also results in smaller call blocking probabilities for all classes of traffic. We also discuss the implementation issues of our proposed algorithm and develop two approximation methods, state approximation and curve fitting, which can reduce the measurement complexity significantly with only a slight performance degradation  相似文献   

13.
A survey of multicast routing protocols for mobile Ad-Hoc networks   总被引:3,自引:0,他引:3  
A Mobile Ad-hoc NETwork (MANET) is composed of Mobile Nodes (MNs) without any infrastructure. MNs selforganize to form a network over radio links. In this environment, multicast routing protocols are faced with the challenge of producing multi-hop routing under host mobility and bandwidth constraint. Multicast routing plays a significant role in MANETs. In recent years, various multicast routing protocols with distinguishing feature have been newly proposed. In order to provide a comprehensive understanding of these multicast routing protocols designed for MANETs and pave the way for the further research, a survey of the multicast routing protocols is discussed in detail in this paper. Qualitatively, based on their primary multicast routing selection principle, we show that all these protocols could be placed under one of two broad routing selection categories: multicast routing based on application independence and multicast routing based on application dependence.  相似文献   

14.
An Efficient Multicast Routing Protocol in Wireless Mobile Networks   总被引:11,自引:0,他引:11  
Suh  Young-Joo  Shin  Hee-Sook  Kwon  Dong-Hee 《Wireless Networks》2001,7(5):443-453
Providing multicast service to mobile hosts in wireless mobile networking environments is difficult due to frequent changes of mobile host location and group membership. If a conventional multicast routing protocol is used in wireless mobile networks, several problems may be experienced since existing multicast routing protocols assume static hosts when they construct the multicast delivery tree. To overcome the problems, several multicast routing protocols for mobile hosts have been proposed. Although the protocols solve several problems inherent in multicast routing proposals for static hosts, they still have problems such as non-optimal delivery path, datagram duplication, overheads resulting from frequent reconstruction of a multicast tree, etc. In this paper, we summarize these problems of multicast routing protocols and propose an efficient multicast routing protocol based on IEFT mobile IP in wireless mobile networks. The proposed protocol introduces a multicast agent, where a mobile host receives a tunneled multicast datagram from a multicast agent located in a network close to it or directly from the multicast router in the current network. While receiving a tunneled multicast datagram from a remote multicast agent, the local multicast agent may start multicast join process, which makes the multicast delivery route optimal. The proposed protocol reduces data delivery path length and decreases the amount of duplicate copies of multicast datagrams. We examined and compared the performance of the proposed protocol and existing protocols by simulation under various environments and we got an improved performance over the existing proposals.  相似文献   

15.
The vehicle delay tolerant networks (DTNs) make opportunistic communications by utilizing the mobility of vehicles, where the node makes delay-tolerant based “carry and forward” mechanism to deliver the packets. The routing schemes for vehicle networks are challenging for varied network environment. Most of the existing DTN routing including routing for vehicular DTNs mainly focus on metrics such as delay, hop count and bandwidth, etc. A new focus in green communications is with the goal of saving energy by optimizing network performance and ultimately protecting the natural climate. The energy–efficient communication schemes designed for vehicular networks are imminent because of the pollution, energy consumption and heat dissipation. In this paper, we present a directional routing and scheduling scheme (DRSS) for green vehicle DTNs by using Nash Q-learning approach that can optimize the energy efficiency with the considerations of congestion, buffer and delay. Our scheme solves the routing and scheduling problem as a learning process by geographic routing and flow control toward the optimal direction. To speed up the learning process, our scheme uses a hybrid method with forwarding and replication according to traffic pattern. The DRSS algorithm explores the possible strategies, and then exploits the knowledge obtained to adapt its strategy and achieve the desired overall objective when considering the stochastic non-cooperative game in on-line multi-commodity routing situations. The simulation results of a vehicular DTN with predetermined mobility model show DRSS achieves good energy efficiency with learning ability, which can guarantee the delivery ratio within the delay bound.  相似文献   

16.
The purpose of this paper is to construct bandwidth-satisfied multicast trees for QoS applications in large-scale ad-hoc networks (MANETs). Recent routing protocols and multicast protocols in large-scale MANETs adopt two-tier infrastructures to avoid the inefficiency of the flooding. Hosts with a maximal number of neighbors are often chosen as backbone hosts (BHs) to forward packets. Most likely, these BHs will be traffic concentrations/bottlenecks of the network. In addition, since host mobility is not taken into consideration in BH selection, these two-tier schemes will suffer from more lost packets if highly mobile hosts are selected as BHs. In this paper, a new multicast protocol is proposed for partitioning large-scale MANET into two-tier infrastructures. In the proposed two-tier multicast protocol, hosts with fewer hops and longer remaining connection time to the other hosts will be selected as BHs. The objective is not only to obtain short and stable multicast routes, but also to construct a stable two-tier infrastructure with fewer lost packets. Further, previous MANET quality-of-service (QoS) routing/multicasting protocols determined bandwidth-satisfied routes for QoS applications. Some are implemented as a probing scheme, but the scheme is inefficient due to high overhead and slow response. On the contrary, the others are implemented by taking advantage of routing and link information to reduce the inefficiency. However, the latter scheme suffers from two bandwidth-violation problems. In this paper, a novel algorithm is proposed to avoid the two problems, and it is integrated with the proposed two-tier multicast protocol to construct bandwidth-satisfied multicast trees for QoS applications in large-scale MANETs. The proposed algorithm aims to achieve better network performance by minimizing the number of forwarders in a tree.  相似文献   

17.
When there is disconnection in mobile ad hoc network under group mobility, it falls into the delay-tolerant network (DTN). However, most existing research in DTN targets entity mobility. In this paper, we consider the routing strategy for DTN with group mobility, and propose the leader based group routing (LBGR) by making full use of group structure in group mobility. Three major mechanisms closely related to the group mobility are proposed in LBGR. First, we treat each group as one individual unit during routing execution to substantially reduce the routing overhead and the resource requirement. Second, we consider the resource allocation in each group and propose the leader-dominating routing in LBGR to reduce the impact of the group dynamics on network performance. Third, to make better use of the rare contact opportunities in DTN, we propose the group based packet exchange, in which the contact of any two nodes from two groups will trigger the packet exchange between the two groups. By extensive simulation we show that LBGR outperforms two traditional routing protocols, epidemic routing and DSR, in various network conditions. Especially, we will find that the impact of the group dynamics on LBGR is very limited.  相似文献   

18.
A protocol for scalable loop-free multicast routing   总被引:3,自引:0,他引:3  
In network multimedia applications such as multiparty teleconferencing, users often need to send the same information to several (but not necessarily all) other users. To manage such one-to-many or many-to-many communication efficiently in wide-area internetworks, it is imperative to support and perform multicast routing. Multicast routing sends a single copy of a message from a source to multiple receivers over a communication link that is shared by the paths to the receivers. Loop-freedom is an especially important consideration in multicasting because applications using multicasting tend to be multimedia and bandwidth intensive, and loops in multicast routing duplicate looping packets. We present and verify a new multicast routing protocol, called multicast Internet protocol (MIP), which offers a simple and flexible approach to constructing both group-shared and shortest-paths multicast trees. MIP can be sender-initiated or receiver-initiated or both; therefore, it can be tailored to the particular nature of an application's group dynamics and size. MIP is independent of the underlying unicast routing algorithms used. MIP is robust and adapts under dynamic network conditions (topology or link cost changes) to maintain loop-free multicast routing. Under stable network conditions, MIP has no maintenance or control message overhead. We prove that MIP is loop-free at every instant, and that it is deadlock-free and obtains multicast routing trees within a finite time after the occurrence of an arbitrary sequence of topology or unicast changes  相似文献   

19.
Multicast routing and bandwidth dimensioning in overlay networks   总被引:20,自引:0,他引:20  
Multicast services can be provided either as a basic network service or as an application-layer service. Higher level multicast implementations often provide more sophisticated features and can provide multicast services at places where no network layer support is available. Overlay multicast networks offer an intermediate option, potentially combining the flexibility and advanced features of application layer multicast with the greater efficiency of network layer multicast. In this paper, we introduce the multicast routing problem specific to the overlay network environment and the related capacity assignment problem for overlay network planning. Our main contributions are the design of several routing algorithms that optimize the end-to-end delay and the interface bandwidth usage at the multicast service nodes within the overlay network. The interface bandwidth is typically a key resource for an overlay network provider, and needs to be carefully managed in order to maximize the number of users that can be served. Through simulations, we evaluate the performance of these algorithms under various traffic conditions and on various network topologies. The results show that our approach is cost-effective and robust under traffic variations.  相似文献   

20.
A QoS-aware multicast routing protocol   总被引:4,自引:0,他引:4  
The future Internet is expected to support multicast applications with quality of service (QoS) requirements. To facilitate this, QoS multicast routing protocols are pivotal in enabling new receivers to join a multicast group. However, current routing protocols are either too restrictive in their search for a feasible path between a new receiver and the multicast tree, or burden the network with excessive overhead. We propose QMRP, a new QoS-aware multicast routing protocol. QMRP achieves scalability by significantly reducing the communication overhead of constructing a multicast tree, yet it retains a high chance of success. This is achieved by switching between single-path routing and multiple-path routing according to the current network conditions. The high level design of QMRP makes it operable on top of any unicast routing algorithm in both intradomain and interdomain. Its responsiveness is improved by using a termination mechanism which detects the failure as well as the success of routing without the use of timeout. In addition, QMRP always constructs loop-free multicast trees  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号