首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 78 毫秒
1.
In this paper, a variable structure current controller based on a space voltage vector PWM scheme is presented for induction motor drives. In this current controller design, only the current sensors are employed and we attempt to force the stator currents to be exactly equal to the reference currents rapidly. This proposed current controller, which is based on the space voltage vector PWM drive, exhibits several advantages in terms of reduced switching frequency, robustness to parameter variations, elimination of current/torque ripple, and improved performance in induction motor drive. It shows that the current control laws can be demonstrated in theory. Finally, simulation and experimentation results verify the proposed control scheme  相似文献   

2.
Direct torque control of an induction motor using a single current sensor   总被引:2,自引:0,他引:2  
A novel scheme for the direct torque control (DTC) of an induction motor (IM) is proposed, which uses a single sensor of current inserted in the inverter dc link. The rationale behind the proposal is to develop a low-cost but high performance IM drive. The scheme exploits a simple and robust algorithm to reconstruct the stator currents needed to estimate the motor flux and torque. The algorithm operates in two stages: first, it predicts the stator currents from a model of the motor and then adjusts the prediction on the basis of the sensed dc-link current. Experimental results are given to demonstrate the ability of the scheme in reproducing the performance of a traditional DTC IM drive.  相似文献   

3.
For a high-power induction motor drive, the switching frequency of the inverter cannot become higher than one kilohertz, and such a switching frequency produces a large current ripple, which then produces torque ripple. To minimize the current ripple, a method based on deadbeat control theory for current regulation is proposed. The pulsewidth modulation (PWM) pattern is determined at every sampling instant based on stator current measurements, motor speed, current references, and rotor flux vector, which is predicted by a state observer with variable poles selection, so that the stator currents are controlled to be exactly equal to the reference currents at every sampling instant. The proposed method consists of two parts: (1) derivation of a deadbeat control and (2) construction of a state observer that predicts the rotor flux and the stator currents in the next sampling instant. This paper describes a theoretical analysis, computer simulations and experimental results  相似文献   

4.
Parasitic torque pulsations exist in permanent magnet synchronous motors (PMSMs) due to nonsinusoidal flux density distribution around the air-gap, errors in current measurements, and variable magnetic reluctance of the air-gap due to stator slots. These torque pulsations vary periodically with rotor position and are reflected as speed ripple, which degrades the PMSM drive performance, particularly at low speeds. Because of the periodic nature of torque ripple, iterative learning control (ILC) is intuitively an excellent choice for torque ripple minimization. In this paper, first we propose an ILC scheme implemented in time domain to reduce periodic torque pulsations. A forgetting factor is introduced in this scheme to increase the robustness of the algorithm against disturbance. However, this limits the extent to which torque pulsations can be suppressed. In order to eliminate this limitation, a modified ILC scheme implemented in frequency domain by means of Fourier series expansion is presented. Experimental evaluations of both proposed schemes are carried out on a DSP-controlled PMSM drive platform. Test results obtained demonstrate the effectiveness of the proposed control schemes in reducing torque ripple by a factor of approximately three under various operating conditions.  相似文献   

5.
The basic concept of direct torque control of induction machines is investigated in order to emphasize the effects produced by a given voltage vector on stator flux and torque variations. The low number of voltage vectors which can be applied to the machine using the basic DTC scheme may cause undesired torque and current ripple. An improvement of the drive performance can be obtained using a new DTC algorithm based on the application of the space vector modulation (SVM) for prefixed time intervals. In this way a sort of discrete space vector modulation (DSVM) is introduced. Numerical simulations and experimental tests have been carried out to validate the proposed method  相似文献   

6.
In this paper, a sensorless output feedback controller is designed in order to drive the induction motor (IM) without the use of flux and speed sensors. First, a new sliding-mode observer that uses only the measured stator currents is synthesized to estimate the speed, flux, and load torque. Second, a current-based field-oriented sliding-mode control is developed so as to steer the estimated speed and flux magnitude to the desired references. A stability analysis based on the Lyapunov theory is also presented in order to guarantee the closed-loop stability of the proposed observer-control system. Two experimental results for a 1.5-kW IM are presented and analyzed by taking into account the unobservability phenomena of the sensorless IM.   相似文献   

7.
A direct-flux-vector-controlled scheme of induction generator has been proposed in this paper for future 42-V automobile application. The fundamental relationship between the rotating speed of the stator flux vector and torque is analyzed. A simple structure with only one proportional-integral (PI) controller is shown to implement the torque and flux controls adequately. By controlling the electromagnetic torque of the induction machine, the required dc-bus voltage can be well regulated within the 42-V PowerNet specifications. Fixed switching frequency and low torque ripple are obtained with space-vector modulation technique. Simulation and experimental results indicate that the proposed scheme provides a practical solution for an integrated starter alternator other than the widely applied field-oriented- control scheme.  相似文献   

8.
传统的永磁同步电机直接转矩控制采用双滞环结构,因而电机转矩和磁链脉动较大。SVM控制方法通过合成最合理的电压矢量对转矩和磁链作精确补偿,能够一定程度上降低二者的脉动,但传统SVM控制方法包含了转速和转矩两个PI调节器,两个调节器的参数设计比较复杂,且直接影响了电机性能。提出用快速终端滑模(FTSM)控制器来代替传统PI转速调节器,为了克服滑模带来的抖振,设计负载转矩观测器,并将观测值反馈至滑模控制器。仿真和实验结果表明所提控制方法改善了系统的动静态性能,抗干扰能力增强,同时SMC固有抖振现象得到有效抑制。  相似文献   

9.
This paper describes feedback-linearizing control of interior permanent magnet (IPM) motors which operate in magnetic saturation. First, we propose a current tracking controller for direct control of stator currents. Then, we explicitly characterize all torque controllers that can make the motor torque of an IPM motor exactly linear with respect to torque command even if magnetic saturation occurs. In particular, our torque controller contains a free function that can be used to achieve other control objectives as well as linear dynamic characteristics. Finally, the free function is chosen so optimal as to maximize power efficiency. The practical use of our control method is demonstrated through various simulation and experimental results.  相似文献   

10.
Sensorless torque control of SyncRel motor drives   总被引:1,自引:0,他引:1  
This paper describes a direct self-control (DSC) scheme for synchronous reluctance motor drives. The presented DSC scheme develops a new torque control methodology that does not require any position transducer to synchronize the stator current vector with the rotor. Such a control strategy differs from the conventional DSC approach in order to fit some specific requirements of synchronous reluctance (SyncRel) machines. First, torque and rotor position are controlled instead of torque and stator flux as in a conventional DSC scheme. Second, the operating sector is selected according to the actual position of the current vector rather than the position of the stator flux. The proposed methodology allows simplifying implementation of the torque control on SyncRel drives and reducing the global cost for medium-performance electric drives. Simulations and experimental tests on a 1.5-kW motor drive are provided to evaluate the consistency and the performance of the proposed control technique  相似文献   

11.
Permanent magnet synchronous machines generate parasitic torque pulsations owing to distortion of the stator flux linkage distribution, variable magnetic reluctance at the stator slots, and secondary phenomena. The consequences are speed oscillations which, although small in magnitude, deteriorate the performance of the drive in demanding applications. The parasitic effects are analyzed and modeled using the complex state-variable approach. A fast current control system is employed to produce high-frequency electromagnetic torque components for compensation. A self-commissioning scheme is described which identifies the machine parameters, particularly the torque ripple functions which depend on the angular position of the rotor. Variations of permanent magnet flux density with temperature are compensated by on-line adaptation. The algorithms for adaptation and control are implemented in a standard microcontroller system without additional hardware. The effectiveness of the adaptive torque ripple compensation is demonstrated by experiments  相似文献   

12.
In recent years, several control methods have been proposed to reduce the torque ripple produced by permanent magnet synchronous machines [sinusoidal and trapezoidal back electromotive force (EMF)]. In these approaches, a drive system is used to control current harmonics based upon measured machine parameters or measured torque ripple. In general, the methods presented have utilized high-precision position encoders and thus a common perception is that such encoders are required for successful mitigation. In this paper, a position observer is developed that is shown to be suitable for control-based torque ripple mitigation. Additional advantages of the observer are that it achieves excellent start-up performance, requires no knowledge of the machine parameters, and is applicable to machines with an arbitrary back EMF waveform and stator slot configuration.  相似文献   

13.
In this paper, efficiency enhancement algorithms are developed and implemented on an indirect vector-controlled three-phase induction motor (IM) drive, and its performance under different operating conditions is analysed. The controllable electrical losses in the IM are minimised through the optimal control of direct axis (d-axis) stator current, and improvement in motor efficiency is achieved by weakening the rotor flux. The optimal d-axis stator current is also estimated using particle swarm optimisation (PSO) to validate the results obtained through analytical control method. The developed algorithms are tested under various operating conditions and the dynamic performance of the IM drive is analysed. The effectiveness of analytical and PSO-based efficiency optimisation control over conventional constant flux control, especially during light load at rated speed operation, is summarised. The effectiveness of the developed algorithm is validated experimentally through development of laboratory prototype set-up. The effect of parametric variation on efficiency, stator current, torque and speed of IM drive is studied through sensitivity analysis. The effect of variation in stator and rotor resistance due to change in operating temperature of the IM is also analysed and the robustness of the developed algorithm against parametric variations is demonstrated through simulation and experimental studies.  相似文献   

14.
A highly dynamic control scheme with very low torque ripple-direct self control (DSC) with torque hysteresis control-for very high-power medium-voltage induction motor drives fed by a double three-level inverter (D3LI) is presented. In this arrangement, two three-level inverters that are connected in parallel at their DC sides are feeding the open motor windings. The DSC, well known from two- and three-level inverters, is adapted to the D3LI and optimized for a minimum torque ripple. An 18-corner trajectory is chosen for the stator flux of the induction machine since it is approaching the ideal circle much better than the hexagon known from DSC for two-level inverters, without any detriment to the torque ripple. The machine and inverter control are explained and the proposed torque quality and dynamics are verified by measurements on a 180-kW laboratory drive.  相似文献   

15.
本文提出了一种新型感应电动机调速系统的线性化解耦控制方法,以定子磁链和电磁转矩作为感应电动机数学模型的输出,给出了感应电动机逆系统的动态方程,利用得到的逆系统将调速系统解耦为电磁转矩和定子磁链两个线性子系统。在此基础上,对整个调速系统进行了综合,给出了调速系统的原理框图,实现了电磁转矩和定子磁链的动态解耦控制。仿真实验验证了理论分析的正确性和控制方案的可行性。  相似文献   

16.
Control of Three-Phase, Four-Wire PWM Rectifier   总被引:1,自引:0,他引:1  
This paper presents the analysis, design, and control of a four-wire rectifier system using split-capacitor topology. The proposed controller does not require any complex transformation or input voltage sensing. A detailed analysis of the distortions in the line and the neutral currents is presented. It is shown that the single-carrier-based, conventional sine-triangle PWM (CSPWM) scheme results in a peak-to-peak neutral current ripple, which is greater than the peak-to-peak ripple of any of the line currents. Also, for the same operating condition, the distortions in the line and the neutral currents increase considerably, when a three-limb boost inductor is used instead of three single-phase inductors. A three-carrier-based SPWM scheme is proposed in this paper. Compared to CSPWM, the proposed scheme significantly reduces the neutral current ripple when three single-phase inductors are used, and reduces both line and neutral current ripples when a three-limb inductor is used. The control scheme is verified through Matlab simulation. It is implemented on an field-programmable gate-array (FPGA)-based digital controller and tested on a prototype. Simulation and experimental results are presented.  相似文献   

17.
A sensor to measure the stator torsional vibration due to torque ripple produced by a surface mount permanent magnet machine is first described. The sensor is relatively inexpensive and is straight forward to incorporate into a drive system. Experiments are performed to validate that the voltage produced by the sensor is linearly related to torque ripple amplitude. Closed-loop controllers are then described that adjust the stator current harmonics applied to the machine to achieve a commanded average torque while mitigating measured torsional vibration. Simulation and experimental results are used to demonstrate the effectiveness of the control techniques.  相似文献   

18.
Permanent magnet motors are usually driven in one of two ways. Sinusoidal currents are applied when the motor has a sinusoidal back EMF, and rectangular currents are applied when the back EMF has a trapezoidal shape. If implemented perfectly, each of these drive schemes is capable of producing ripple-free torque, which is desirable in many applications. However, in reality, permanent magnet motors never exhibit perfectly sinusoidal or trapezoidal back EMFs. Moreover, the power electronics used to drive the motor often has limitations that keep it from producing the required current waveform, especially as speed or load torque increases. In addition to these limitations, a permanent magnet motor often exhibits parasitic cogging torque that directly contributes to torque ripple. This work explores the relationships between motor current and back EMF, and identifies minimum torque ripple, maximum efficiency current excitations that can be implemented with finite bandwidth power electronics (current controlled VSI)  相似文献   

19.
永磁同步电机传统的直接转矩控制存在磁链幅值和转矩脉动大的缺点。文中研究了基于状态观测器的无差拍直接转矩控制方案,通过构造全维状态观测器的方法来观测定子磁链幅值,消除了初始磁链误差以及电机参数对传统的观测方法影响的问题。此外针对传统控制系统产生的时滞现象,文中的研究提前一个周期计算出所需的电压矢量,实现了转矩和磁链无差拍控制。仿真结果表明,所提出的基于全维状态观测器的无差拍控制能较好地抑制磁链和转矩脉动,具有良好的控制性能。  相似文献   

20.
Split-phase (six-phase) induction motor stator windings consist of two sets of three phase windings, which are spatially phase separated by 30 electrical degrees. Due to mutual cancellation of the air gap flux for all the 6n/spl plusmn/1 (n=1,3,5...) order harmonic voltages, called zero sequence components, large harmonic currents are generated in the stator phases. Only the 12n/spl plusmn/1 (n=0,1,2,3...)-order harmonic voltage components contribute toward the air gap flux and electromagnetic torque production in the machine. In this paper, a novel scheme is proposed where two six-phase induction motors are connected in series with proper phase sequence so that the zero sequence component voltages of one machine act as torque and flux producing components for the other. Thus, the two six-phase motors can be independently controlled from a single six-phase inverter. A vector control scheme for the dual motor drive is developed and experimentally verified in this paper.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号