首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 0 毫秒
1.
太赫兹波独特的性质使其在物理学、生物学、医疗诊断、无损检测、无线通信等领域有着广阔的应用前景。共振隧穿二极管(RTD)是一种基于量子隧穿效应的半导体器件,利用其负微分电阻和直流非线性特性,可以分别实现太赫兹波的产生和探测,近年来获得越来越多的关注。基于RTD的太赫兹探测器具有可室温工作、体积小、易集成、灵敏度高等特点,使其在未来短距离、超高速的太赫兹无线通信及万物互联等场景具备优势。本文将重点介绍太赫兹RTD探测器的研究进展及其应用进展,并对后续技术发展进行展望。  相似文献   

2.
利用InP基共振隧穿二极管(RTD)和加载硅透镜的片上天线设计实现了超过1 THz的振荡器。采用Silvaco软件对RTD模型进行仿真研究,分析了不同发射区掺杂浓度、势垒层厚度、隔离层厚度以及势阱层厚度等对器件直流特性的影响规律。对研制的RTD器件直流特性测试显示:峰值电流密度Jp为359.2 kA/cm2,谷值电流密度Jv为135.8 kA/cm2,峰谷电流比PVCR为2.64,理论计算得到的器件最大射频输出功率和振荡频率(fmax)分别为1.71 mW和1.49 THz。利用透镜封装的形式对采用Bow-tie片上天线和RTD设计的太赫兹振荡器进行封装,测试得到振荡频率超过1 THz,输出功率为2.57μW,直流功耗为8.33 mW,是国内首次报道超过1 THz的振荡器。  相似文献   

3.
太赫兹波是振荡频率在100GHz~10THz范围的电磁波,利用共振隧穿器件高频高速的特点,适宜制作此波段的振荡源器件。指出与其他类型的太赫兹源器件相比,共振隧穿型太赫兹波源器件具有体积小、重量轻、便于与控制电路集成以及易于进行调制等特点;此外,还适宜用Si透镜进行功率合成,增大其总发射功率。给出几种重要太赫兹共振隧穿器件的结构、制造工艺和器件性能,作为太赫兹技术领域的研究人员选择太赫兹波源器件的参考。  相似文献   

4.
本文设计的RTD结构,采用目前最新的发射极渐变In含量(GE)结构和集电区隔离层与势垒层之间的高In过渡层(HITL)结构,同时对发射区和集电区进行重掺杂。发射极设计面积为1μm2至几μm2的情况下,通过基于非平衡格林函数法的量子输运模拟器WinGreen模拟,将势阱厚度从4.5nm降低到4nm,峰值电流密度JP从13mA/μm2达到43mA/μm2,输出功率从235μW达到2.625mW。阵列型RTO可实现功率合成,使RTO的功率再增加一个数量级,达到毫瓦甚至几十毫瓦。同时建立包含各种寄生参数的等效电路模型,通过PSPICE工具仿真,得到振荡频率可达1.78THz的仿真结果。  相似文献   

5.
紧凑和相干的太赫兹源是太赫兹应用的关键组成,共振隧穿二极管(RTD)是目前振荡频率最高的电子学器件,RTD太赫兹振荡源具有结构紧凑、功耗低、室温工作、有一定输出功率、易集成、覆盖频率较宽等优点。InP基RTD太赫兹振荡源在600 GHz左右的频段内输出功率可达百微瓦量级,可见报道的最高振荡频率为1.92 THz,输出功率0.4 μW。RTD振荡源的输出功率可以通过偏置电压进行直接调制,使得其在高容量短距离的太赫兹通信系统中具有很大的优势。目前,InP基RTD太赫兹振荡源成为太赫兹源领域的研究热点。  相似文献   

6.
太赫兹技术被称为“改变未来世界十大技术之一”,对基础科学研究、国民经济发展和国防建设具有重要意义,尤其在未来6G通信方面举足轻重。太赫兹波源是整个太赫兹技术研究的基础,也是太赫兹应用系统的核心部件。近年来,共振隧穿二极管(RTD)型太赫兹波源因体积小,质量轻,易于集成,室温工作,功耗低等特点受到广泛关注,为太赫兹波推广应用开辟了新的途径。通过文献分析,本文从器件材料技术、主要工艺及器件性能等方面对InP基与GaN基RTD太赫兹振荡器的发展进行评述,并探讨了InP基与GaN基RTD太赫兹振荡器件的研究方向。  相似文献   

7.
介绍了基于共振隧穿二极管的隧穿静态随机存储器的单元结构和原理.讨论了nMOS,pMOS和CMOS作为单元里的选中管的特点,综合考虑面积和功耗后,发现nMOS是选中管的最佳选择.设计了基于RTD的TSRAM系统结构.模拟显示了这种新型存储器具有高集成度、高速和低功耗的优势.  相似文献   

8.
简要评述共振隧穿二极管(RTD)器件研究进展。重点探讨以下问题:为什么RTD研究经久不衰?器件理论模型达到何等水平?器件特性、结构和材料方面有哪些关键?围绕这些问题,介绍了有关基本概念,对RTD器件物理模型和特性近来的研究成果和前景进行了分析,并提要性地和同类的其它量子器件作了比较。  相似文献   

9.
程玥  潘立阳  许军 《半导体学报》2004,25(2):138-142
介绍了基于共振隧穿二极管的隧穿静态随机存储器的单元结构和原理.讨论了n MOS,p MOS和CMOS作为单元里的选中管的特点,综合考虑面积和功耗后,发现n MOS是选中管的最佳选择.设计了基于RTD的TSRAM系统结构.模拟显示了这种新型存储器具有高集成度、高速和低功耗的优势.  相似文献   

10.
共振隧穿二极管   总被引:9,自引:4,他引:5  
设计并研制出室温工作的共振隧穿二极管,室温电流峰谷比达到7.6:1,最高振荡频率为54GHz。本文对RTD的设计、研制过程、参数和特性测试进行了系统的分析和说明。  相似文献   

11.
马龙  黄应龙  余洪敏  王良臣  杨富华   《电子器件》2006,29(3):627-634
RTD基集成电路所具有的超高速、低功耗和自锁存的特性,使其在数字电路、混合信号电路以及光电子系统中有着重要的应用。首先对RTD与化合物半导体HEMT,HBT以及硅CMOS器件的集成工艺进行了介绍。在MOBILE电路及其改进和延伸的基础上,对高速ADC/DAC电路和低功耗的存储器电路进行了具体的分析。最后对RTD基电路面临的主要问题和挑战进行了讨论,提出基于硅基RTD与线性阈值门(LTG)逻辑相结合是未来纳米级超大规模集成电路的最佳发展方向。  相似文献   

12.
用HP8510(C)网络分析仪测量了A1As/InGaAs/AlAs共振隧穿二极管(RTD)的散射参数,通过曲线拟合提取了等效电路参数,估算了RTD的开关时间,通过速度指数估算的RTD上升时间最小可达21ps。  相似文献   

13.
基于共振隧穿二极管的蔡氏电路设计研究   总被引:1,自引:0,他引:1  
首次提出一种基于共振隧穿二极管的蔡氏电路.利用共振隧穿二极管(RTD)的负微分电阻特性,采用驱动点特性合成的方法,实现了蔡氏电路中的分段线性电阻,通过一组参数的选取,进而实现了蔡氏电路,并用PSpice模拟软件进行了仿真验证.相对于用传统方法实现的蔡氏电路,基于RTD的蔡氏电路具有电路结构更加简洁、便于集成的特点.  相似文献   

14.
共振隧穿二极管作为较为成熟的纳米电子器件,已被广泛应用于高速低功耗电路。由于其具有负内阻特性,单一门电路的功能大大增加,减少了电路的复杂度。在阈值逻辑函数的硬件实现方面,共振隧穿器件也体现出显著的优势。结合谱技术,基于共振隧穿二极管,设计了可实现任意三变量阈值逻辑函数的阈值逻辑单元电路。该电路还可作为阈值逻辑网络中的基本单元,实现复杂的逻辑功能。通过HSPICE软件,仿真验证了所设计电路的正确性。  相似文献   

15.
共振隧穿二极管作为较为成熟的纳米电子器件,已被广泛应用于高速低功耗电路。由于其具有负内阻特性,单一门电路的功能大大增加,减少了电路的复杂度。在阈值逻辑函数的硬件实现方面,共振隧穿器件也体现出显著的优势。结合谱技术,基于共振隧穿二极管,设计了可实现任意三变量阈值逻辑函数的阈值逻辑单元电路。该电路还可作为阈值逻辑网络中的基本单元,实现复杂的逻辑功能。通过HSPICE软件,仿真验证了所设计电路的正确性。  相似文献   

16.
用HP8510(C)网络分析仪测量了AlAs/InGaAs/AlAs共振隧穿二极管(RTD)的散射参数.通过曲线拟合提取了等效电路参数,估算了RTD的开关时间.通过速度指数估算的RTD上升时间最小可达21ps.  相似文献   

17.
共振隧穿二极管的开关时间特性   总被引:1,自引:2,他引:1  
用HP8510(C)网络分析仪测量了AlAs/InGaAs/AlAs共振隧穿二极管(RTD)的散射参数.通过曲线拟合提取了等效电路参数,估算了RTD的开关时间.通过速度指数估算的RTD上升时间最小可达21ps.  相似文献   

18.
本文对双垒二极管中的电子隧穿作了数值分析。引入隧穿矩阵,建立了透射系数的公式;利用该公式,计算了隧道电流。此外,本文还分析了势垒结构对伏-安特性的影响。  相似文献   

19.
郭维廉 《微纳电子技术》2006,43(8):361-365,392
在系统细致分析RTD材料结构参数与器件特性参数关系的基础上,确立了RTD材料结构的设计原则和设计方法,并对以SI—GaAs为衬底的RTD分子束外延(MBE)材料生长结构进行了设计。所研制出的RTD参数实测结果证实了此设计方法是正确的。  相似文献   

20.
共振隧穿器件及其集成技术发展趋势和最新进展   总被引:1,自引:1,他引:0  
介绍了共振隧穿器件及其特点,论述了该类器件及其集成技术的发展趋势和最新进展,特别是SiO 2S/iS/iO 2共振隧穿二极管及其集成电路的研制成功是一个突破性的进展。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号