首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 468 毫秒
1.
Wireless local area networks experience performance degradation in presence of small packets. The main reason for that is the large overhead added at the physical and link layers. This paper proposes a concatenation algorithm which groups IP layer packets prior to transmission, called PAC-IP. As a result, the overhead added at the physical and the link layers is shared among the grouped packets. Along with performance improvement, PAC-IP enables packet-based fairness in medium access as well as includes QoS support module handling delay-sensitive traffic demands. The performance of the proposed algorithm is evaluated through both simulations and an experimental WLAN testbed environment covering the single-hop and the widespread infrastructure network scenarios. Obtained results underline significant performance enhancement in different operating scenarios and channel conditions. Dzmitry Kliazovich received his Masters degree in Telecommunication science from Belarusian State University of Informatics and Radioelectronics in 2002. He is currently working towards the Ph.D. degree in University of Trento, Italy. From September 2005 to February 2006 he was a visiting researcher at the Computer Science Department of the University of California at Los Angeles. He is an author of more than 20 research papers published in international books, journals and conference proceedings. His main research interest lies in field of wireless networking with a focus on performance optimization and cross-layer design. Fabrizio Granelli was born in Genoa in 1972. He received the “Laurea” (M.Sc.) degree in Electronic Engineering from the University of Genoa, Italy, in 1997, with a thesis on video coding, awarded with the TELECOM Italy prize, and the Ph.D. in Telecommunications from the same university, in 2001. Since 2000 he is carrying on his teaching activity as Assistant Professor in Telecommunications at the Dept. of Information and Communication Technology—University of Trento (Italy). In August 2004, he was visiting professor at the State University of Campinas (Brasil). He is author or co-author of more than 60 papers published in international journals, books and conferences, and he is member of the Technical Committee of the International Conference on Communications (from 2003 to 2007) and Global Telecommunications Conference (GLOBECOM2003 and GLOBECOM2004). Dr. Granelli is guest-editor of ACM Journal on Mobile Networks and Applications, special issues on “WLAN Optimization at the MAC and Network Levels” and “Ultra-Wide Band for Sensor Networks”, and Co-Chair of 10th IEEE Workshop on Computer-Aided Modeling, Analysis, and Design of Communication Links and Networks (CAMAD’04). Dr. Granelli is General Vice-Chair of the First International Conference on Wireless Internet (WICON’05) and General Chair of the 11th IEEE Workshop on Computer-Aided Modeling, Analysis, and Design of Communication Links and Networks (CAMAD’06). His main research activities are in the field of networking and signal processing, with particular reference to network performance modeling, medium access control, wireless networks, cognitive radio systems, and video transmission over packet networks. He is Senior Member of IEEE and Associate Editor of IEEE Communications Letters.  相似文献   

2.
Pre-equalization Techniques for Downlink and Uplink TDD MC-CDMA Systems   总被引:1,自引:0,他引:1  
Time division duplex (TDD) multi carrier-code division multiple access (MC-CDMA) systems have recently been proposed as potential candidates for next generation (4G) technology. In order to mitigate multiple access interference, in this paper we investigate pre-equalization schemes for both downlink and uplink transmissions, the former also in a multiple transmit antenna scenario. In particular, new pre-equalizer techniques are introduced and complexity issues addressed. Numerical results are given to highlight the effectiveness of the proposed schemes with respect to other existing pre-equalizer solutions. Paola Bisaglia was born in Padova, Italy, on August 8, 1971. She received the Laurea (cum laude) and Ph.D. degrees in electronic engineering from the University of Padova, Padova, Italy in 1996 and 2000 respectively. In 2000 she joined Hewlett-Packard Research Laboratories, Bristol, England, working on Home Phoneline Networking and wireless LANs. From 2002 she is a research fellow at the Department of Information Engineering of the University of Padova, Italy. Her research interests include wireless local area networks; modulation, coding techniques and detection strategies for next generation (4G) broadband cellular systems, based on the combination of multi-carrier and spread-spectrum modulations. Luca Sanguinetti is a Ph.D. Student of the University of Pisa. He was born in Empoli, Italy, on February 19, 1977, and he received the Doctor Engineer degree (cum laude) in information engineering from the University of Pisa, Italy, in 2002. Since 2002 he was with the Department of Information Engineering of the University of Pisa, where he is working toward the Ph.D. degree in information engineering under the supervision of Prof. Umberto Mengali and Prof. Michele Morelli. In 2004, he was a visiting Ph.D. student at the German Aerospace Center (DLR), Oberpfaffenhofen, Germany. Currently he is involved in a research project dealing with the design and the development of base stations and user terminals for wideband wireless communications systems able to cope with those reconfigurability and interoperability characteristics required by the next generation mobile communication systems. His research interests are in wireless communication theory, with emphasis on synchronization and detection algorithms and channel estimation in multiple-access communication systems. Michele Morelli received the Laurea (cum laude) in electrical engineering and the “Premio di Laurea SIP” from the University of Pisa, Italy, in 1991 and 1992 respectively. From 1992 to 1995 he was with the Department of Information Engineering of the University of Pisa, where he received the Ph.D. degree in electrical engineering. In September 1996 he joined the Centro Studi Metodi e Dispositivi per Radiotrasmissioni (CSMDR) of the Italian National Research Council (CNR) in Pisa where he held the position of Research Assistant. Since 2001 he has been with the Department of Information Engineering of the University of Pisa where he is currently an Associate Professor of Telecommunications. His research interests are in wireless communication theory, with emphasis on synchronization algorithms and channel estimation in multiple-access communication systems. Nevio Benvenuto received the Laurea degree from the University of Padova, Padova, Italy, and the Ph.D. degree from the University of Massachusetts, Amherst, in 1976 and 1983, respectively, both in electrical engineering. From 1983 to 1985 he was with AT&T Bell Laboratories, Holmdel, NJ, working on signal analysis problems. He spent the next three years alternating between the University of Padova, where he worked on communication systems research, and Bell Laboratories, as a Visiting Professor. From 1987 to 1990, he was a member of the faculty at the University of Ancona. He was a member of the faculty at the University of L'Aquila from 1994 to 1995. Currently, he is a Professor in the Electrical Engineering Department, University of Padova. His research interests include voice and data communications, digital radio, and signal processing. Silvano Pupolin received the Laurea degree in Electronic Engineering from the University of Padova, Italy, in 1970. Since then he joined the Department of Information Engineering, University of Padova, where currently is Full Professor of Electrical Communications. He was Chairman of the Faculty of Electronic Engineering from 1990 to 1994, Chairman of the PhD Course in Electronics and Telecommunications Engineering from 1991 to 1997 and Director of the PhD School in Information Engineering from 2004. Also, he was member of the programming and development committee from 1997 to 2002 and member of Scientific Committee from 1996 to 2001 of the University of Padova; member of the budget Committee of the Faculty of Engineering from 2003. He has been actively engaged in research on: Digital communication systems over copper wires and fiber optics; Spread spectrum communication systems; Design of large reliable communications networks; Effects of phase noise and HPA nonlinearities in OFDM systems; 3G mobile radio communications systems (UTRA-FDD and TDD) and beyond 3G (OFDM modulation and MC CDMA); Packet radio, Ad-hoc networks with the use of Bluetooth and WLAN. He was Chairman of the 9-th and 10-th Tyrrhenian International Workshop on Digital Communications devoted to “Broadband Wireless Communications” and to “Multimedia Communications”, respectively, and he was General Chair of the 7th International Symposium on Wireless Personal Multimedia Communications (WPMC'04). He spent the summer 1985 at AT&T Bell Laboratories on leave from Padova, doing research on digital radio systems. He was Principal investigator for research projects entitled “Variable bit rate mobile radio communication systems for multimedia applications”, “OFDM Systems with Applications to WLAN Networks”, and “MC-CDMA: an air interface for the 4th generation of wireless systems”.  相似文献   

3.
The IEEE 802.11 MAC protocol provides a reliable link layer using Stop & Wait ARQ. The cost for high reliability is the overhead due to acknowledgement packets in the direction opposite to the actual data flow. In this paper, the design of a new protocol as an enhancement of IEEE 802.11 is proposed, with the aim of reducing supplementary traffic overhead and increasing the bandwidth available for actual data transmission. The performance of the proposed protocol is evaluated through comparison with IEEE 802.11 as well as with a SSCOP-based protocol. Results underline significant advantages of the proposed protocol against existing ones, thus confirming the value and potentiality of the approach.Dzmitry Kliazovich received his Masters degree in telecommunication science from Belarusian State University of Informatics and Radioelectronics in 2002. He is currently working towards the Ph.D. degree in University of Trento, Italy. His main research interest lies in wireless networking field with a focus on performance optimization and cross-layer design.Fabrizio Granelli was born in Genoa in 1972. He received the “Laurea” (M.Sc.) degree in Electronic Engineering from the University of Genoa, Italy, in 1997, with a thesis on video coding, awarded with the TELECOM Italy prize, and the Ph.D. degree in Electronic Engineering and Computer Science from the same university in 2001. Since 2000 he is carrying on his teaching activity as Assistant Professor at the Dept. of Information and Communication Technologies (DIT) of the University of Trento (Italy) within the B.Sc. and M.Sc. Degrees in Telecommunications Engineering.The research interests of Dr. Granelli are mainly focused on networking, with particular attention to network modeling and performance evaluation, wireless networks, access control, and next-generation telecommunication networks.He is author of more than 30 refereed papers, published in several international journals and conferences.Dr. Granelli is member of the IEEE Committee on “Communication Systems Integration and Modeling” (CSIM) and of the Technical Programme Committee of the “QoS and Performance Evaluation Symposium” of the International Conference on Communications (ICC 2003 and ICC 2004).  相似文献   

4.
A distributed Wireless Sensor Network (WSN) is a collection of low-end devices with wireless message exchange capabilities. Due to the scarcity of hardware resources, the lack of network infrastructures, and the threats to security, implementing secure pair-wise communications among any pair of sensors is a challenging problem in distributed WSNs. In particular, memory and energy consumption as well as resilience to sensor physical compromise are the most stringent requirements. In this paper, we introduce a new threat model to communications confidentiality in WSNs, the smart attacker model. Under this new, more realistic model, the security features of previously proposed schemes decrease drastically. We then describe a novel pseudo-random key pre-deployment strategy ESP that combines all the following properties: (a) it supports an energy-efficient key discovery phase requiring no communications; (b) it provides node to node authentication; (c) it is highly resistant to the smart attacker.We provide both asymptotic results and extensive simulations of the schemes that are beingproposed. This work was partially funded by the WEB-MINDS project supported by the Italian MIUR under the FIRB program, and by the PRIN 2003 “Web-based Management and Representation of Spatial and Geographic Data” program from the Italian MIUR. Roberto Di Pietro is partially funded by ISTI-CNR, WNLab, Pisa, with a Post-doc grant under the IS-MANET program. Roberto Di Pietro received the Ph.D. in Computer Science from the University of Roma “La Sapienza”, Italy, in 2004. He received the Bs. and Ms. degree in Computer Science from the University of Pisa, Italy, in 1994. Since 1995 he has been working for the technical branch of the Italian Army and the Internal Affairs Ministry. His main research interests include: security for mobile ad hoc and wireless networks, security for distributed systems, secure multicast, applied cryptography and computer forensics. Luigi V. Mancini received the PhD degre in Computer Science from the University of Newcastle upon Tyne, UK, in 1989, and the Laurea degree in Computer Science from the University of Pisa, Italy, in 1983. From 2000, he is a full professor of Computer Science at the Dipartimento di Informatica of the University of Rome “La Sapienza”. Since 1994, he is a visiting research professor of the Center for Secure Information Systems, GMU, Virginia, USA. Currently he is the advisor of six Ph.D students. His current research interests include: computer network and information security, wireless network security, fault-tolerant distributed systems, large-scale peer-to-peer systems, and hard-real-time distributed systems. He published more than 60 scientific papers in international conferences and journals such as: ACM TISSEC, IEEE TKDE, IEEE TPDS, and IEEE TSE. He served in the program committees of several international conferences which include: ACM Conference on Computer and Communication Security, ACM Conference on Conceptual Modeling, ACM Symposium on Access Control Models and Technology, ACM Workshop of Security of Ad-hoc and Sensor Networks, IEEE Securecomm, IEEE Conference on Cluster Computing. He is also the program chair of the first two editions of the IEEE Workshop on Hot Topics in Peer-to-Peer Systems held in 2004 (Volendam, Holand) and in 2005 (San Diego, California). Currently, he is a member of the Scientific Board of the Italian Communication Police force, and the director of the Master degree program in Computer and Network Security of the University of Rome “La Sapienza”, Italy. Alessandro Mei received the Laurea degree in computer science from the University of Pisa, Italy, in 1994, and the PhD degree in mathematics from the University of Trento, Italy, in 1999. In 1998, he was at the Department of EE-Systems of the University of Southern California, Los Angeles, as a visiting scholar for one year. After holding a postdoctoral position at the University of Trento, in 2001 he joined the Faculty of Science of the University of Rome "La Sapienza", Italy, as an assistant professor of computer science. His main research interests include security of distributed systems and networks, algorithms for parallel, distributed, and optical systems and reconfigurable computing. He was presented with the Best Paper Award of the 16th IEEE International Parallel and Distributed Processing Symposium in 2002, the EE-Systems Outstanding Research Paper Award of the University of Southern California for 2000, and the Outstanding Paper Award of the Fifth IEEE/ACM International Conference on High Performance Computing in 1998. He is a member of the ACM and the IEEE and, from 2005, he is an Associate Editor of IEEE Transactions on Computers.  相似文献   

5.
This paper explores analytical Radio Resource Management models where the relationship between users and services is mapped through utility functions. Compared to other applications of these models to networking, we focus in particular on specific aspects of multimedia systems with adaptive traffic, and propose a novel framework for describing and investigating dynamic allocation of resources in wireless networks. In doing so, we also consider economic aspects, such as the financial needs of the provider and the users’ reaction to prices. As an example of how our analytical tool can be used, in this paper we compare different classes of RRM strategies, e.g., Best Effort vs. Guaranteed Performance, for which we explore the relationships between Radio Resource Allocation, pricing, provider’s revenue, network capacity and users’ satisfaction. Finally, we present a discussion about Economic Admission Control, which can be applied in Best Effort scenarios to further improve the performance. Part of this work has been presented at the conference ACM/IEEE MSWiM 2004, Venice (Italy). Leonardo Badia received a Laurea degree (with honors) in electrical engineering and a Ph.D. in information engineering from the University of Ferrara, Italy, in 2000 and 2004, respectively. He was a Research Fellow at the University of Ferrara from 2001 to 2006. During these years, he also had collaborations with the University of Padova, Italy, and Wireless@KTH, Royal Institute of Technology, Stockholm, Sweden. In 2006, he joined the “Institutions Markets Technologies” (IMT) Institute for Advanced Studies, Lucca, Italy, where he is currently a Research Fellow. His research interests include wireless ad hoc and mesh networks, analysis of transmission protocols, optimization tools and economic models applied to radio resource management. Michele Zorzi received a Laurea degree and a Ph.D. in electrical engineering from the University of Padova in 1990 and 1994, respectively. During academic year 1992–1993, he was on leave at UCSD, attending graduate courses and doing research on multiple access in mobile radio networks. In 1993 he joined the faculty of the Dipartimento di Elettronica e Informazione, Politecnico di Milano, Italy. After spending three years with the Center for Wireless Communications at UCSD, in 1998 he joined the School of Engineering of the University of Ferrara, Italy, where he became a professor in 2000. Since November 2003 he has been on the faculty at the Information Engineering Department of the University of Padova. His present research interests include performance evaluation in mobile communications systems, random access in mobile radio networks, ad hoc and sensor networks, energy constrained communications protocols, and broadband wireless access. He was Editor-In-Chief of IEEE Wireless Communications, 2003–2005, and currently serves on the Editorial Boards of IEEE Transactions on Communications, IEEE Transactions on Wireless Communications, Wiley’s Journal of Wireless Communications and Mobile Computing, and ACM/URSI/Kluwer Journal of Wireless Networks, and on the Steering Committee of the IEEE Transactions on Mobile Computing. He has also been a Guest Editor of special issues in IEEE Personal Communications (Energy Management in Personal Communications Systems) and IEEE Journal on Selected Areas in Communications (Multimedia Network Radios).  相似文献   

6.
Supporting real-time and interactive traffic in addition to traditional data traffic with a best-effort nature represents a constantly rising need in any kind of telecommunications environment. The IEEE 802.11 based WLAN (Wireless Local Area Network) environment does not represent an exception. This is why at different protocol layers, and primarily at the MAC layer, many efforts are being put by both the research community and the standardization bodies to design effective mechanisms for user QoS (Quality of Service) differentiation. Although early results are coming into sight, such as, for example, the IEEE 802.11e standard release, still a thorough research activity is required. Aim of the present paper is to contribute to the cited research issue by proposing an improvement to the “static” traffic prioritisation mechanism foreseen by the IEEE 802.11e MAC (Medium Access Control) protocol. This latter shows a twofold drawback. First, there is no certainty that QoS requirements relevant to a given application are always fulfilled by the “statically” associated priority. Second, resource requests of the applications are not adapted to the (usually highly) variable traffic conditions of a distributed WLAN environment. The algorithm we propose is specifically tailored to “dynamically” assign 802.11e MAC priorities, depending on both application QoS requirements and observed network congestion conditions. It is carefully designed, implemented into a system simulation tool, and its highly effective behaviour assessed under variable traffic and system conditions. Antonio Iera graduated in Computer Engineering at the University of Calabria, Italy, in 1991 and received a Master Diploma in Information Technology from CEFRIEL/Politecnico di Milano, Italy, in 1992 and a Ph.D. degree from the University of Calabria, Italy, in 1996. From 1994 to 1995 he has been at the Mobile Network Division Research Center, Siemens AG Muenchen, Germany to participate to the CEC Project “RACE II 2084 ATDMA (Advanced TDMA Mobile Access)” under a “Commission of European Communities Fellowship Contract in RACE Mobility Action”. He has been with the University of Reggio Calabria, Italy, from 1997 to 2000 as Assistant Professor, and from 2001 to 2005 as Associate Professor. Currently, he is Full Professor of Telecommunications at the same University. In 1995 and in 1996 he has been the recipient of an IEEE Paper Award for the papers presented at the IEEE International Conference on Universal Personal Communications ICUPC'95, and an IEICE/IEEE Outstanding Paper Award for the paper presented at the IEEE ATM Workshop'99, respectively. He served as member of Technical Program Committees of several International Conferences, and in 2003 he has been co-Guest Editor for the special issue “QoS in Next-generation Wireless Multimedia Communications Systems” in the IEEE Wireless Communications Magazine. His research interests include QoS control and resource management in Personal Communications Systems and Enhanced Wireless and Satellite Systems. Giuseppe Ruggeri received the degree in electronics engineering from the University of Catania, Italy, in 1998. He received the Ph.D. degree in electronics, computer science and telecommunications engineering with a dissertation on “Advanced Methods to Improve the QoS in VoIP Systems Based on VBR Speech Coders”. His interests include the field of adaptive-rate voice transmission for IP Telephony applications, and support of Quality of Service in heterogeneous wireless networks and WLAN-3G interconnection-integration . He is currently Assistant Professor in the Department of Computer Science, Mathematics, Electronic and transportation systems (DIMET) at the University “Mediterranea” of Reggio Calabria. His mail address is ruggeri@ing.unirc.it. Domenico Tripodi received M.S. degree (cum laude) in electronic engeneering from the University ‘Mediterranea' of Reggio Calabria, Italy in 2003. He won a post-degree scholarship from CNIT in 2004, and he is currently at CNIT Research Unit of Reggio Calabria. His reasearch interest are in the area of QoS provisioning in Mobile Ad-Hoc Networks.  相似文献   

7.
Time Hopping Ultra Wide Band (TH–UWB) commonly encodes the data symbols by shifting the position of the transmitted pulses by a quantity that is quantized over the inter-pulse interval range. In this paper, we relax the hypothesis of a discrete value for the time shift introduced by the TH code, by considering the possibility of generating real-valued codes that introduce time hopping in a “fluid” way. The effect on the power spectral density of generated signals is analyzed, and application of fluid coding to multiple access and to network coexistence is investigated by simulation. Portions of this work were presented at the 2005 2nd International Workshop Networking with Ultra Wide Band, Workshop on Ultra Wide Band for Sensor Networks [M.G. Di Benedetto, G. Giancola, D. Domenicali and P. Ingargiola “Fluid Coding in Time Hopping Ultra Wide Band Networks,” Proceedings of the IEEE 2nd International Workshop Networking with Ultra Wide Band—Ultra Wide Band for Sensor Networks, July 2005, Rome, Italy]. Daniele Domenicali took his Laurea degree in Telecommunications Engineering at the University of Rome La Sapienza in 2004. In November 2004 Domenicali wins the open competition for PhD scholarship in Information and Communication Engineering. He is teaching assistant for the course of “UWB Communication Systems” conducted by Professor Maria Gabriella Di Benedetto at the University of Rome La Sapienza. His research activity includes Pulse Shaping and the related modulation and coding techniques (Time Hopping Coding, PAM and PPM Modulation). Particular attention is paid to the effects produced in the Power Spectral Density, in order to find solutions capable of optimizing spectrum occupation while meeting the constraints imposed by emission masks. Daniele Domenicali is involved in the European Network of Excellence HYCON (Hybrid Control: Taming Heterogeneity and Complexity of Networked Embedded Systems). Guerino Giancola received the “Laurea” degree (magna cum laude) in Telecommunications Engineering, and the Ph.D. degree in Information and Communication Engineering from University of Rome La Sapienza, in 2001 and 2005, respectively. He is currently a research affiliate at the INFOCOM Department at University of Rome La Sapienza, where is actually holding the course of “Electrical Communications” for the degree on Electronic Engineering. His research interests include the analysis and modelling of Multi User Interference in Impulse Radio systems, and the design of Medium Access Control functions and protocols for UWB ad-hoc networks. Guerino Giancola recently co-authored with Prof. Maria-Gabriella Di Benedetto a book on Ultra Wide Band from radio to the network, titled “Understanding Ultra Wide Band Radio Fundamentals” and published by Prentice Hall in June 2004. He is now involved in the European project “PULSERS – Pervasive Ultra wideband Low Spectral Energy Radio Systems” and in the European Network of Excellence “HYCON- Hybrid Control: Taming Heterogeneity and Complexity of Networked Embedded Systems”. Guerino Giancola is a member of the IEEE Communication Society. Maria-Gabriella Di Benedetto obtained her Ph.D. in Telecommunications in 1987 from the University of Rome La Sapienza, Italy. In 1991, she joined the Faculty of Engineering of University of Rome La Sapienza, where currently she is a Full Professor of Telecommunications at the Infocom Department. She has held visiting positions at the Massachusetts Institute of Technology, the University of California, Berkeley, and the University of Paris XI, France. In 1994, she received the Mac Kay Professorship award from the University of California, Berkeley. Her research interests include wireless communication systems and speech science. From 1995 to 2000, she directed four European projects for the design of UMTS. Since 2000, she has been active in fostering the development of Ultra Wide Band (UWB) radio communications in Europe. Within the 5th framework, she directed for the Infocom Dept. two European projects (whyless.com and UCAN) aimed at the design and implementation of UWB ad-hoc networks. Currently, within the 6th EU Framework, her “Networking with UWB” research group participates in the PULSERS Integrated Project which will integrate UWB research and development in Europe for the next years, and in the LIAISON Integrated Project as regards the application of UWB to location-based services. She also participates in the HYCON network of excellence. Dr. Di Benedetto is co-edited several Special Issues on UWB communications and networks for several Journals including IEEE JSAC, Journal of Communications and Networks, Mobile Networks and Applications, Eurasip. In 2004, Dr. Di Benedetto co-authored with G. Giancola the first published book on UWB for communications titled “Understanding Ultra Wide Band Radio Fundamentals” and published by Prentice Hall. She recently completed the co-edition of two new books on UWB that will be published by 2005: UWB Communication Systems - A comprehensive overview, with T. Kaiser, D. Porcino, A. Molisch, and I. Oppermann, Hindawi Publishing Corporation, 2005, andUltra Wideband Wireless Communications with H. Arslan and Z.N. Chen, John Wiley & Sons, Inc., 2005.  相似文献   

8.
In this paper, we discuss and provide a detailed tutorial of four different methods for analytically evaluating the harmonic distortion in class-AB stages. All the methods are suitable for pencil-and-paper analysis and are based on modeling the stage with a specific non-linear function. We analyze them in details and extend some of them for predicting harmonic distortion behavior in a wide range of input signal amplitude. Comparisons made by means of simulations, reveal that some methods are more precise than others but require more computational effort. On the contrary, some of them are simple to use but are less precise. Moreover, some are more appropriate for predicting HD2 and others for HD3, only. Results of the present paper may be used by designers to choose the more efficient method for analyzing distortion in class-AB stages. Gianluca Giustolisi was born in Catania, Italy, in 1971. He received the Laurea degree (cum laude) in electronic engineering and the Ph.D. degree in electrical engineering from University of Catania, Catania, Italy, in 1995 and 1999, respectively. Currently he is associate professor at Dipartimento di Ingegneria Elettrica Elettronica e dei Sistemi (DIEES), University of Catania. His research interests include analysis, modelling and design of analog integrated circuits and systems with particular emphasis on non-linear and low-voltage applications. Gianluca Giustolisi is IEEE Member. Gaetano Palumbo was born in Catania, Italy, in 1964. He received the laurea degree in Electrical Engineering in 1988 and a Ph.D. degree from the University of Catania in 1993. Since 1993 he conducts courses on Electronic Devices, Electronics for Digital Systems and basic Electronics. In 1994 he joined the DEES (Dipartimento Elettrico Elettronico e Sistemistico), now DIEES (Dipartimento di Ingegneria Elettrica Elettronica e dei Sistemi), at the University of Catania as a researcher, subsequently becoming associate professor in 1998. Since 2000 he is a full professor in the same department. His primary research interest has been analog circuits with particular emphasis on feedback circuits, compensation techniques, current-mode approach, low-voltage circuits. Then, his research has also embraced digital circuits with emphasis on bipolar and MOS current-mode digital circuits, adiabatic circuits, and high-performance building blocks focused on achieving optimum speed within the constraint of low power operation. In all these fields he is developing some the research activities in collaboration with STMicroelectronics of Catania. He was the co-author of three books “CMOS Current Amplifiers” and ”Feedback Amplifiers: theory and design” and “Model and Design of Bipolar and MOS Current-Mode Logic (CML, ECL and SCL Digital Circuits)” all by Kluwer Academic Publishers, in 1999, 2001 and 2004, respectively. He is a contributor to the Wiley Encyclopedia of Electrical and Electronics Engineering. He is the author of more than 250 scientific papers on referred international journals (over 100) and in conferences. Moreover he is co-author of several patents. In 1999/2001 and 2004/2005 he served as Associated Editor of the IEEE Transactions on Circuits and Systems part I for the topic “Analog Circuits and Filters” and “Digital Circuits and Systems”, respectively. In 2005 he was one of the 12 panelists in the scientific-disciplinare area 09 - industrial and information engineering of the CIVR (Committee for Evaluation of Italian Research), which has the aim to evaluate the Italian research in the above area for the period 2001–2003. In 2003 he received the Darlington award. Since 2006 he is serving as Associated Editor of the IEEE Transactions on Circuits and Systems part I. Prof. Palumbo is an IEEE Senior Member.  相似文献   

9.
Nowadays Wi-Fi is the most mature technology for wireless-Internet access. Despite the large (and ever increasing) diffusion of Wi-Fi hotspots, energy limitations of mobile devices are still an issue. To deal with this, the standard 802.11 includes a Power-Saving Mode (PSM), but not much attention has been devoted by the research community to understand its performance in depth. We think that this paper contributes to fill the gap. We focus on a typical Wi-Fi hotspot scenario, and assess the dependence of the PSM behavior on several key parameters such as the packet loss probability, the Round Trip Time, the number of users within the hotspot. We show that during traffic bursts PSM is able to save up to 90% of the energy spent when no energy management is used, and introduces a limited additional delay. Unfortunately, in the case of long inactivity periods between bursts, PSM is not the optimal solution for energy management. We thus propose a very simple Cross-Layer Energy Manager (XEM) that dynamically tunes its energy-saving strategy depending on the application behavior and key network parameters. XEM does not require any modification to the applications or to the 802.11 standard, and can thus be easily integrated in current Wi-Fi devices. Depending on the network traffic pattern, XEM reduces the energy consumption of an additional 20–96% with respect to the standard PSM. This work has been carried out while A. Passarella was with the Department of Information Engineering of the University of Pisa. Giuseppe Anastasi is an associate professor of Computer Engineering at the Department of Information Engineering of the University of Pisa, Italy. He received the Laurea (cum laude) degree in Electrical Engineering, and the Ph.D. degree in Computer Engineering, both from the University of Pisa, in 1990 and 1995, respectively. His research interests include mobile and pervasive computing, ad hoc and sensor networks, and power management. He is a co-editor of the book Advanced Lectures in Networking (LNCS 2497, Springer, 2002), and has published more than 60 papers in the area of computer networking and pervasive computing, both in international journals and conference proceedings. He is a member of the editorial board of the Journal of Ubiquitous Computing and Intelligence (JUCI), and is currently serving as Vice Program Co-Chair for the IEEE MASS 2007 conference. He has served as general chair for IEEE WoWMoM 2005, Workshops Chair for IEEE PerCom 2006 and IEEE WoWMoM 2006, and program chair for several international workshops. He has also served on the Technical Program Committee of many international conferences. He is a member of the IEEE Computer Society. Marco Conti is a research director at IIT, an institute of the Italian National Research Council (CNR). He co-authored the book “Metropolitan Area Networks” (Springer, 1997) and is co-editor of the book “Mobile Ad Hoc Networking” (IEEE-Wiley 2004). He published in journals and conference proceedings more than 180 research papers related to design, modeling, and performance evaluation of computer-network architectures and protocols. He served as TPC chair of IEEE PerCom 2006, and of the IFIP-TC6 Conferences “Networking2002” and “PWC2003”, and as TPC co-chair of ACM WoWMoM 2002, WiOpt ’04, IEEE WoWMoM2005, and ACM MobiHoc2006. He served as general co-chair of IEEE WoWMoM 2006 and as general chair of ACM REALMAN 2006. Currently, he is serving as general chair of IEEE MASS 2007. He is Associate Editor of Pervasive and Mobile Computing Journal, and he is on the editorial board of: IEEE Transactions on Mobile Computing, Ad Hoc Networks journal and Wireless Ad Hoc and Sensor Networks: An International Journal. Enrico Gregori received the Laurea in electronic engineering from the University of Pisa in 1980. In 1981 he joined the Italian National Research Council (CNR) where he is currently a CNR research director. He is currently the deputy director of the CNR institute for Informatics and Telematics (IIT). In 1986 he held a visiting position in the IBM research center in Zurich working on network software engineering and on heterogeneous networking. He has contributed to several national and international projects on computer networking. He has authored more than 100 papers in the area of computer networks and has published in international journals and conference proceedings and is co-author of the book “Metropolitan Area Networks” (Springer, London 1997). He was the General Chair of the IFIP TC6 conferences: Networking2002and PWC2003 (Personal Wireless Communications) and IEEE Pervasive Computing and Communication (PERCOM) 2006. He served as guest editor for the Networking2002 journal special issues on: Performance Evaluation, Cluster Computing and ACM/Kluwer Wireless Networks Journals. He is a member of the board of directors of the Create-Net association, an association with several Universities and research centers that is fostering research on networking at European level. He is on the editorial board of the Cluster Computing, of the Computer Networks and of the Wireless Networks Journals. His current research interests include: Ad hoc networks, Sensor networks, Wireless LANs, Quality of service in packet-switching networks, Evolution of TCP/IP protocols. Andrea Passarella is a Researcher at the IIT Institute of the National Research Council (CNR), Italy. Before joining IIT, he was a Research Associate at the Computer Laboratory of the University of Cambridge, UK. He received the Ph.D. and M.S. Degrees in Computer Engineering, both from the University of Pisa, Italy, in 2005 and 2001, respectively. His current research is mostly on opportunistic and delay-tolerant networking. More in general, he works on ad hoc and sensor networks, specifically on p2p systems, multicasting, transport protocols, and energy-efficient protocols. His research interests also include mesh networks and wireless access to the Internet. He is Co-Editor of the book “Multi-hop Ad hoc Networks: From Theory to Reality” (Nova Science, 2007). He was TPC Vice-Chair for IEEE REALMAN 2005, ACM REALMAN 2006, and IEEE MDC 2006. He served and is currently serving in the TPC of several international conferences, including IEEE PerCom 2006/07 and IEEE WoWMoM 2006/07, and workshops. He is an Associate Technical Editor for IEEE Communications Magazine. He is a member of ACM SIGMOBILE.  相似文献   

10.
The main goal of this paper is to provide routing–table-free online algorithms for wireless sensor networks (WSNs) to select cost (e.g., node residual energies) and delay efficient paths. As basic information to drive the routing process, both node costs and hop count distances are considered. Particular emphasis is given to greedy routing schemes, due to their suitability for resource constrained and highly dynamic networks. For what concerns greedy forwarding, we present the Statistically Assisted Routing Algorithm (SARA), where forwarding decisions are driven by statistical information on the costs of the nodes within coverage and in the second order neighborhood. By analysis, we prove that an optimal online policy exists, we derive its form and we exploit it as the core of SARA. Besides greedy techniques, sub–optimal algorithms where node costs can be partially propagated through the network are also presented. These techniques are based on real time learning LRTA algorithms which, through an initial exploratory phase, converge to quasi globally optimal paths. All the proposed schemes are then compared by simulation against globally optimal solutions, discussing the involved trade–offs and possible performance gains. The results show that the exploitation of second order cost information in SARA substantially increases the goodness of the selected paths with respect to fully localized greedy routing. Finally, the path quality can be further increased by LRTA schemes, whose convergence can be considerably enhanced by properly setting real time search parameters. However, these solutions fail in highly dynamic scenarios as they are unable to adapt the search process to time varying costs. Michele Rossi was born in Ferrara, Italy on October 30th, 1974. He received the Laurea degree in Electrical Engineering (with honors) and the Ph.D. degree in Information Engineering from the University of Ferrara in 2000 and 2004, respectively. Since 2000 he has been a Research Fellow at the Department of Engineering of the University of Ferrara. During 2003 he was on leave at the Center for Wireless Communications (CWC) at the University of California San Diego (UCSD), where he did research on wireless sensor networks. In November 2005 he joined the Department of Information Engineering of the University of Padova, Italy, where he is currently an Assistant Professor. Michele Rossi is currently part of the EU funded Ambient Networks and eSENSE projects. His research interests include: TCP/IP protocols over wireless networks, performance analysis of link layer retransmission techniques, routing and access selection in heterogeneous wireless networks and MAC/routing algorithms for wireless sensor networks. Michele Zorzi was born in Venice, Italy, in 1966. He received the Laurea degree and the Ph.D. degree in Electrical Engineering from the University of Padova, Italy, in 1990 and 1994, respectively. During the Academic Year 1992/93, he was on leave at the University of California, San Diego (UCSD), attending graduate courses and doing research on multiple access in mobile radio networks. In 1993, he joined the faculty of the Dipartimento di Elettronica e Informazione, Politecnico di Milano, Italy. After spending three years with the Center for Wireless Communications at UCSD, in 1998 he joined the School of Engineering of the University of Ferrara, Italy, and in 2003 joined the Department of Information Engineering of the University of Padova, Italy, where he is currently a Professor. His present research interests include performance evaluation in mobile communications systems, random access in mobile radio networks, ad hoc and sensor networks, and energy constrained communications protocols. Dr. Zorzi from 2003 to 2005 was the Editor-In-Chief of the IEEE Wireless Communications Magazine, and currently serves on the Editorial Boards of the IEEE Transactions on Communications, the IEEE Transactions on Wireless Communications, the IEEE Transactions on Mobile Computing, the Wiley Journal of Wireless Communications and Mobile Computing and the ACM/URSI/Kluwer Journal of Wireless Networks. He was also guest editor for special issues in the IEEE Personal Communications Magazine (Energy Management in Personal Communications Systems) and the IEEE Journal on Selected Areas in Communications (Multi-media Network Radios). Ramesh R. Rao was born in Sindri, India, where he completed his undergraduate work at the Regional Engineering College of the University of Madras in Tiruchirapalli, obtaining a BE (Honors) degree in Electronics and Communications in 1980. He completed his graduate work at the University of Maryland, College Park, Maryland where he received his M.S. and Ph.D. Professor Rao is currently a Professor at the University of California, San Diego (UCSD) at the department of Electrical and Computer Engineering in the Irwin and Joan Jacobs School of Engineering, where he has been a member of the faculty since 1984. Professor Rao is the former director of UCSD’s Center for Wireless Communications (CWC), and currently serves as the Qualcomm Endowed Chair in Telecommunications and Information Technologies, and as the Director of the San Diego Division of the California Institute of Telecommunications and Information Technology [Cal-(IT)2]. As Director of the San Diego Division of Cal-(IT)2, he leads several interdisciplinary and collaborative projects. His research interests include architectures, protocols and performance analysis of computer and communication networks, and he has published extensively on these topics. Since 1984, Professor Rao has authored over 100 technical papers, contributed book chapters, conducted a number of short courses and delivered invited talks and plenary lectures. He is currently supervising both masters and doctoral students.  相似文献   

11.
Connected coverage, which reflects how well a target field is monitored under the base station, is the most important performance metric used to measure the quality of surveillance that wireless sensor networks (WSNs) can provide. To facilitate the measurement of this metric, we propose two novel algorithms for individual sensor nodes to identify whether they are on the coverage boundary, i.e., the boundary of a coverage hole or network partition. Our algorithms are based on two novel computational geometric techniques called localized Voronoi and neighbor embracing polygons. Compared to previous work, our algorithms can be applied to WSNs of arbitrary topologies. The algorithms are fully distributed in the sense that only the minimal position information of one-hop neighbors and a limited number of simple local computations are needed, and thus are of high scalability and energy efficiency. We show the correctness and efficiency of our algorithms by theoretical proofs and extensive simulations. Chi Zhang received the B.E. and M.E. degrees in Electrical Engineering from Huazhong University of Science and Technology, Wuhan, China, in July 1999 and January 2002, respectively. Since September 2004, he has been working towards the Ph.D. degree in the Department of Electrical and Computer Engineering at the University of Florida, Gainesville, Florida, USA. His research interests are network and distributed system security, wireless networking, and mobile computing, with emphasis on mobile ad hoc networks, wireless sensor networks, wireless mesh networks, and heterogeneous wired/wireless networks. Yanchao Zhang received the B.E. degree in computer communications from Nanjing University of Posts and Telecommunications, Nanjing, China, in July 1999, the M.E. degree in computer applications from Beijing University of Posts and Telecommunications, Beijing, China, in April 2002, and the Ph.D. degree in electrical and computer engineering from the University of Florida, Gainesville, in August 2006. Since September 2006, he has been an Assistant Professor in the Department of Electrical and Computer Engineering, New Jersey Institute of Technology, Newark. His research interest include wireless and Internet security, wireless networking, and mobile computing. He is a member of the IEEE and ACM. Yuguang Fang received the BS and MS degrees in Mathematics from Qufu Normal University, Qufu, Shandong, China, in 1984 and 1987, respectively, a Ph.D. degree in Systems and Control Engineering from Department of Systems, Control and Industrial Engineering at Case Western Reserve University, Cleveland, Ohio, in January 1994, and a Ph.D. degree in Electrical Engineering from Department of Electrical and Computer Engineering at Boston University, Massachusetts, in May 1997. From 1987 to 1988, he held research and teaching position in both Department of Mathematics and the Institute of Automation at Qufu Normal University. From September 1989 to December 1993, he was a teaching/research assistant in Department of Systems, Control and Industrial Engineering at Case Western Reserve University, where he held a research associate position from January 1994 to May 1994. He held a post-doctoral position in Department of Electrical and Computer Engineering at Boston University from June 1994 to August 1995. From September 1995 to May 1997, he was a research assistant in Department of Electrical and Computer Engineering at Boston University. From June 1997 to July 1998, he was a Visiting Assistant Professor in Department of Electrical Engineering at the University of Texas at Dallas. From July 1998 to May 2000, he was an Assistant Professor in the Department of Electrical and Computer Engineering at New Jersey Institute of Technology, Newark, New Jersey. In May 2000, he joined the Department of Electrical and Computer Engineering at University of Florida, Gainesville, Florida, where he got early promotion to Associate Professor with tenure in August 2003, and to Full Professor in August 2005. His research interests span many areas including wireless networks, mobile computing, mobile communications, wireless security, automatic control, and neural networks. He has published over one hundred and fifty (150) papers in refereed professional journals and conferences. He received the National Science Foundation Faculty Early Career Award in 2001 and the Office of Naval Research Young Investigator Award in 2002. He also received the 2001 CAST Academic Award. He is listed in Marquis Who’s Who in Science and Engineering, Who’s Who in America and Who’s Who in World. Dr. Fang has actively engaged in many professional activities. He is a senior member of the IEEE and a member of the ACM. He is an Editor for IEEE Transactions on Communications, an Editor for IEEE Transactions on Wireless Communications, an Editor for IEEE Transactions on Mobile Computing, an Editor for ACM Wireless Networks, and an Editor for IEEE Wireless Communications. He was an Editor for IEEE Journal on Selected Areas in Communications:Wireless Communications Series, an Area Editor for ACM Mobile Computing and Communications Review, an Editor for Wiley International Journal on Wireless Communications and Mobile Computing, and Feature Editor for Scanning the Literature in IEEE Personal Communications. He has also actively involved with many professional conferences such as ACM MobiCom’02 (Committee Co-Chair for Student Travel Award), MobiCom’01, IEEE INFOCOM’06, INFOCOM’05 (Vice-Chair for Technical Program Committee), INFOCOM’04, INFOCOM’03, INFOCOM’00, INFOCOM’98, IEEE WCNC’04, WCNC’02, WCNC’00 Technical Program Vice-Chair), WCNC’99, IEEE Globecom’04 (Symposium Co-Chair), Globecom’02, and International Conference on Computer Communications and Networking (IC3N) (Technical Program Vice-Chair).  相似文献   

12.
13.
This paper describes research towards a system for locating wireless nodes in a home environment requiring merely a single access point. The only sensor reading used for the location estimation is the received signal strength indication (RSSI) as given by an RF interface, e.g., Wi-Fi. Wireless signal strength maps for the positioning filter are obtained by a two-step parametric and measurement driven ray-tracing approach to account for absorption and reflection characteristics of various obstacles. Location estimates are then computed using Bayesian filtering on sample sets derived by Monte Carlo sampling. We outline the research leading to the system and provide location performance metrics using trace-driven simulations and real-life experiments. Our results and real-life walk-troughs indicate that RSSI readings from a single access point in an indoor environment are sufficient to derive good location estimates of users with sub-room precision. Gergely V. Záruba is an Assistant Professor of Computer Science and Engineering at The University of Texas at Arlington (CSE@UTA). He has received the Ph.D. degree in Computer Science from The University of Texas at Dallas in 2001, and the M.S. degree in Computer Engineering from the Technical University of Budapest, Department of Telecommunications and Telematics, in 1997. Dr. Záruba’s research interests include wireless networks, algorithms, and protocols, performance evaluation, current wireless and assistive technologies. He has served on many organizing and technical program committees for leading conferences and has guest edited journals. He is a member of the IEEE and its Communications Society. Manfred Huber is an Assistant Professor of Computer Science and Engineering at The University of Texas at Arlington (CSE@UTA). He received his M.S. and Ph.D. degrees in Computer Science from the University of Massachusetts, Amherst in 1993 and 2000, respectively. He obtained his “Vordiplom” from the University of Karlsruhe, Germany in 1990. Dr. Huber is the co-director of the Robotics and of the Learning and Planning Laboratory at CSE@UTA. His research interests are in reinforcement learning, autonomous robots, cognitive systems, and adaptive human-computer interfaces. He is a member of the IEEE, the ACM, and the AAAI. Farhad A. Kamangar is a Professor of Computer Science and Engineering at The University of Texas at Arlington (CSE@UTA). He has received the Ph.D. and M.S. degrees in Electrical Engineering from The University of Texas at Arlington in 1980 and 1977 respectively. He received his B.S. degree from the University of Teheran, Iran in 1975. Dr. Kamangar’s research interests include image processing, robotics, signal processing, machine intelligence and computer graphics. He is a member of the IEEE and the ACM. Imrich Chlamtac is the President of CREATE-NET and the Bruno Kessler Professor at the University of Trento, Italy and has held various honorary and chaired professorships in USA and Europe including the Distinguished Chair in Telecommunications Professorship at the University of Texas at Dallas, Sackler Professorship at Tel Aviv University and University Professorship at the Technical University of Budapest. In the past he was with Technion and UMass, Amherst, DEC Research. Dr. Imrich Chlamtac has made significant contribution to various networking technologies as scientist, educator and entrepreneur. Dr. Chlamtac is the recipient of multiple awards and recognitions including Fellow of the IEEE, Fellow of the ACM, Fulbright Scholar, the ACM Award for Outstanding Contributions to Research on Mobility and the IEEE Award for Outstanding Technical Contributions to Wireless Personal Communications. Dr. Chlamtac published close to four hundred refereed journal, book, and conference articles and is listed among ISI’s Highly Cited Researchers in Computer Science. Dr. Chlamtac is the co-author of four books, including the first book on Local Area Networks (1980) and the Amazon.com best seller and IEEE Editor’s Choice Wireless and Mobile Network Architectures, published by John Wiley and Sons (2000). Dr. Chlamtac has widely contributed to the scientific community as founder and Chair of ACM Sigmobile, founder and steering committee chair of some of the lead conferences in networking, including ACM Mobicom, IEEE/SPIE/ACM OptiComm, CreateNet Mobiquitous, CreateNet WiOpt, IEEE/CreateNet Broadnet, IEEE/CreateNet Tridentcom and IEEE/CreateNet Securecomm conferences. Dr. Chlamtac also serves as the founding Editor in Chief of the ACM/URSI/Springer Wireless Networks (WINET), the ACM/Springer Journal on Special Topics in Mobile Networks and Applications (MONET).  相似文献   

14.
In this paper, we present a low power 12 bit 5 MSPS, successive approximation converter architecture using pipeline technique. The converter consumes 4 mW at the Nyquist rate input with 1.8 V power supply. By combination of pipeline and successive architecture, the entire circuit, simulated at the transistor level in a 0.18 μ CMOS process, achieves a FoM (Figure of Merit) of 0.19 pJ/conversion. Jinghua Li was born in 1973. He received the MSEE and BSEE Degree from College of Electronics and information, Shanghai Jiaotong University and Harbin Engineering University in 1997 and 1994 respectively. He is currently pursuing Ph.D degree in Department of Electrical Engineering, Texas A&M University, College Station, TX, USA. In 1997, he joined Bell Laboratory (China), Lucent Technologies as a member of technical staff. He worked on single-chip HDTV decoder IC and Sonet/SDH SoC for various projects in Murray Hill, NJ, USA and Shanghai China. He also finished projects on hardware implementation of Video conference/Phone based on H.263 standard as his master thesis. Since 2000, he has been a research assistant in Analog Mixed Signal center, TAMU. Most currently his research interests are focused on low power analog to digital conversion IC design, CMOS implementation of 10 G/2.5 G clock data recovery IC for high speed serial communications. Franco Maloberti received the Laurea Degree in Physics (Summa cum Laude) from the University of Parma, Parma Italy, in 1968 and the Dr. Honoris Causa degree in electronics from the Instituto Nacional de Astrofisica, Optica y Electronica (Inaoe), Puebla, Mexico in 1996. In 1993 he was a Visiting Professor at ETH-PEL, Zurich. He was Professor of Microelectronics and Head of the Micro Integrated Systems Group University of Pavia, Pavia, Italy and the TI/J.Kilby Analog Engineering Chair Professor at the Texas A&M University. He is currently the Distinguished Microelectronic Chair Professor at University of Texas at Dallas and part-time Professor at the University of Pavia, Italy. His professional expertise is in the design, analysis and characterization of integrated circuits and analogue digital applications, mainly in the areas of switched capacitor circuits, data converters, interfaces for telecommunication and sensor systems, and CAD for analogue and mixed A-D design. He has written more than 250 published papers, three books and holds 15 patents. He was in 1992 recipient of the XII Pedriali Prize for his technical and scientific contributions to national industrial production. He was co-recipient of the 1996 Institute of Electrical Engineers (U.K.) Fleming Premium for the paper “CMOS Triode Transistor Transconductor for high-frequency continuous time filters.” He has been responsible at both technical and management levels for many research programs including ten ESPRIT projects and has served the European Commission as ESPRIT Projects' Evaluator, Reviewer and as European Union expert in many European Initiatives. He served the Academy of Finland on the assessment of electronic research in Academic institutions and on the research programs' evaluations. Dr. Maloberti was Vice-President, Region 8, of the IEEE Circuit and Systems Society from 1995 to 1997 and an Associate Editor of IEEE-Transaction on Circuit and System-II. He received the 1999 IEEE CAS Society Meritorious Service Award, the 2000 CAS Society Golden Jubilee Medal, and the IEEE Millenium Medal. He is the President of the IEEE Sensor Council and member of the Board of Governors of the IEEE CAS Society. He is a member of the Italian Electrothecnical and Electronic Society (AEI), the Editorial Board of Analog Integrated Circuits and Signal Processing, and Fellow of IEEE.  相似文献   

15.
This paper proposes an investigation of the propagation behaviour for Ultra-Wide Bandwidth (UWB) signals in outdoor environments. Specifically, we first report on the results of an extensive measurement campaign carried out in three selected scenarios, namely “forest”, “hilly” and “sub-urban” environments. Then, we present the statistical model derived through the post-processing of collected samples by the CLEAN algorithm. While an extensive collection of results is provided in the paper, the main achievements can be summarized as follows: (i) the path-loss exponent varies from 2 to 3.5 and depends on the reference scenario and on the height of transmission and reception equipments with respect to the ground floor, (ii) the local mean of the received power experiences a Log-Normal shadowing with a standard deviation that may depend on the azimuth position, (iii) the statistics of the first received echo in the small-scale analysis also well fit a Log-Normal distribution; (iv) the delay spread in the small-scale multipath scenario turns out to be quite small (i.e. roughly 10 ns in the forest scenario and less than 32 ns in the sub-urban scenario). Marco Di Renzo (S’05) received the laurea degree (cum laude) in Electronic Engineering from the University of L’Aquila, Italy, in 2003. In 2002 he was with the Center of Excellence in Research DEWS (Design Methodologies for Embedded Controllers, Wireless Interconnections and System–on-Chip) at the Department of Electrical Engineering, University of L’Aquila, doing research on the analysis and design of Ultra Wide Band digital receiver architectures. Since 2003 he has been with the Department of Electrical Engineering, University of L’Aquila, where he worked on channel sounding and modelling for Ultra Wide Band systems and where he is currently pursuing his Ph.D. degree in Electric and Information Engineering. His current research activity is focused on channel modelling, synchronization and detection theory with specific interest to the Ultra Wide Band technology. In 2004 he played a key role in the successful creation of WEST Aquila S.r.l. (Wireless Embedded Systems Technologies Aquila), a R&D Spin-Off of the University of L’Aquila and the Center of Excellence in Research DEWS, where he currently holds the position of research engineer. Fabio Graziosi (S’96–M’97) was born in L’Aquila, Italy, in 1968. He received the Laurea degree (cum laude) and Ph.D. degree in electronic engineering from the University of L’Aquila, L’Aquila, Italy, in 1993 and 1997, respectively. Since February 1997 he has been with the Department of Electrical Engineering, at the University of L’Aquila, where he currently holds the position of Associate Professor. His current research interests are mainly focused on wireless communication systems with emphasis on wireless sensor networks and ultra wide band communication techniques. He is involved in major national and European research projects in the field of wireless systems. He is member of the Executive Committee of the Center of Excellence DEWS and serves as Chairman of the Board of Directors of WEST Aquila S.r.l., a Spin-off R&D Company of the University of L’Aquila and Center of Excellence DEWS, founded in December 2004. Riccardo Minutolo works in Thales Italia in the R&D department. He graduated in Electronic Engineering in the University of L’Aquila, in 1999. He joined Thomson-csf in 1999 working as junior engineer in the Radio propagation, interference and software development. In that period he gained expertise in HF, VHF, UHF, SHF radio propagation. In 2002 he joined Thales Italy (ex-Thomson-csf) working in the ad hoc networking area. In 2002 he was the National coordinator of a 3 years European international project (Euclide UWB). The Euclide UWB project aimed to study and research the potentiality of the emerging UWB technology for civil security and military purposes. Since 2002 his major areas of interest are: radio propagation, UWB physical layer, MAC and networking. Mauro Montanari was born in 1950 in Rimini and graduated in Electronic Engineering at Bologna University in 1974. He joined in 1976 Telettra, a national telecommunication company, working since the beginning in Defence R&D activities. His first experience was in the field of advanced automatic antenna matching unit in HF band. Afterwards he mastered, staying for several time periods in TRW—Redondo Beach/California, the technical issue of protecting radio communications through Spread Spectrum communications systems, in view of an important application to a new generation of tactical radio systems in VHF frequency band. On this topic he is co-author, with Prof. S. Pupolin of Padua University, of the book “Spread Spectrum Communications Systems” Collana Scientifica Telettra). From 1991 to 1998 he was responsible of the R&D Department within the Defence Division of Alcatel Italia (formerly Telettra) and in this position he managed several R&D projects: (i) Triservice Digital Network for the Italian MOD, in cooperation with Selenia Communications; (ii) SCRA (Single Channel Radio Access) and network management system for the Italian Army tactical network (SOTRIN) as a partner of Catrin Consortium; (iii) A new generation of radio equipment in HF band for fixed applications; (iv) High speed HF modem, according to several NATO waveforms; (v) HF fixed network for Italia Ministry of Foreign Affairs; (vi) Wide band Interception and jamming systems in HF band. Since 1999, he is responsible, within Thales Italia SpA—Land and Joint Systems Division, of Advanced Studies area with the task of promoting in the company new emerging technologies, specifically in the field of Wireless LAN, Tactical Internet, sensor networks, Ultra Wide Band for military applications and plasma antennas. This role includes establishing relations with most Thales R&D centres located in Europe and promoting new cooperative activities in new advanced technological areas. He also manages scientific relation with several Italian Universities. Fortunato Santucci (S’93–M’95–SM’00) was born at L’Aquila, Italy, in 1964. He received the laurea degree and the Ph.D. degree in Electronic Engineering from the University of L’Aquila, Italy, in 1989 and 1994, respectively. In 1989 he was with Selenia Spazio S.p.a., Rome, working on VSAT networks design. In 1991–1992 he was at the Solid State Electronics Institute (I.E.S.S.) of the National Research Council (C.N.R.), Rome, doing research on superconductor receivers for millimeter wave satellite systems. Since 1994 he has been with the Department of Electrical Engineering, University of L’Aquila, where he currently holds the position of Associate Professor. In 1996 he was a visiting researcher at the Department of Electrical and Computer Engineering of the University of Victoria, BC, Canada, where he researched on CDMA networks. His current research activity is focused on communication theory, access control and radio resource management in wireless systems, with special emphasis on technologies for networked embedded systems. He has participated in major national and European research programs in wireless mobile communications and coordinates research programs funded by industrial partners. He has been a reviewer for major technical journal in telecommunications and a session chairman in various conferences. He currently serves as an Editor for the IEEE Transactions on Communications and Kluwer Telecommunications Systems. He has been/is in the TPC of several conferences in communications. He is a Senior Member of the IEEE and is a member of the Communications Theory Committee. He is in the Executive Committee of the Center of Excellence DEWS at the University of L’Aquila and in the Executive Committee of CNIT.  相似文献   

16.
This paper investigates the performance of a fixed Wireless LAN in which nodes are equipped with fully adaptive smart antennas. The considered smart antenna system is a uniform circular array of microstrip patch elements in which the weights are updated using the unconstrained LMS algorithm. The behavior of a new directional MAC protocol for spatial multiplexing is analyzed and compared with IEEE 802.11 DCF. The paper purpose is the evaluation of interference and multipath effects on SDMA, using realistic models for the channel and for the smart antenna system. The link model takes into account path loss, cochannel interference and multipath, using a modified Jakes model. Results show that the performance of the WLAN are strictly dependent on the interferer characteristics and on the angular spread of the channel. Fulvio Babich was born in Trieste, Italy. He received the doctoral degree in electrical engineering, from the University of Trieste, in 1984. From 1984 to 1987 he was with the Research and Development Department of Telettra (Vimercate), working on optical communications. From 1987 to 1992 he was with Research and Development Department of Zanussi (Zeltron), where he held the position of Company Head in the Home System European projects. In 1992, he joined the Department of Electrical Engineering (DEEI) of the University of Trieste, where he is associate professor of digital communications. His current research interests are in the field of wireless networks and personal communications. Massimiliano Comisso was born in Trieste, Italy. He received the degree of “Laurea" in Electronic Engineering from the University of Trieste. Currently, he is a PhD student at the Department of Electrical Engineering (DEEI) at University of Trieste in information technology. His research interests include wireless networks, adaptive arrays and small antennas. Marco D'Orlando was born in Tolmezzo, Italy, in September 1978. He received the Electronic Engineering degree (summa cum laude) from the University of Trieste, Italy, in December 2003. He is currently working toward the Ph.D. degree in the Department of Electrical and Electronic Engineering (DEEI) at University of Trieste. His research interests are in the field of multimedia communications, networking, joint source channel coding and resource allocation. Lucio Manià was born in Ronchi dei Legionari, Italy, in 1942. He received the Electronic Engineering degree from the University of Trieste, Italy, in 1968. Since 1970 he has been an Assistant Professor with the Department of Electrical and Electronic Engineering, where he is currently an Associate Professor. From 1975 to 1985 he was a consulting engineer with Co.El. S.p.A., where he was involved in antenna design for FM and TV broadcasting systems. His current scientific interests include electromagnetic compatibility for safety purposes, wireless communications and numerical techniques for electromagnetic simulations.  相似文献   

17.
This paper considers a low power wireless infrastructure network that uses multi-hop communications to provide end user connectivity. A generalized Rendezvous Reservation Protocol (RRP) is proposed which permits multi-hop infrastructure nodes to adapt their power consumption in a dynamic fashion. When nodes have a long-term association, power consumption can be reduced by having them periodically rendezvous for the purpose of exchanging data packets. In order to support certain applications, the system invokes a connection set up process to establish the end-to-end path and selects node rendezvous rates along the intermediate nodes to meet the application’s quality of service (QoS) needs. Thus, the design challenge is to dynamically determine rendezvous intervals based on incoming applications’ QoS needs, while conserving battery power. In this paper, we present the basic RRP mechanism and an enhanced mechanism called Rendezvous Reservation Protocol with Battery Management (RRP-BM) that incorporates node battery level information. The performance of the system is studied using discrete-event simulation based experiments for different network topologies. The chief metrics considered are average power consumption and system lifetime (that is to be maximized). The QoS metrics specified are packet latency and end-to-end setup latency. It is shown that the use of the RRP-BM can increase the lifetime up to 48% as compared to basic RRP by efficiently reducing the energy consumption. This work was supported by a grant from the Natural Sciences and Engineering Research Council of Canada and Communications and Information Technology Ontario (CITO). Part of the research was supported by Air Force Office of Scientific Research grants F-49620-97-1-0471 and F-49620-99-1-0125; Laboratory for Telecommunications Sciences, Adelphi, Maryland; and Intel Corporation. The authors may be reached via e-mail at todd@mcmaster. ca, krishna@umbc. edu. The basic RRP mechanism was presented at the IASTED International Conference on Wireless and Optical Communications, Banff, Canada, July 2002. Subalakshmi Venugopal received her Bachelors in Computer Science from R.V. College of Engineering, Bangalore, India and her M.S. degree in Computer Science from Washington State University. She interned as a student researcher at the Indian Institute of Science, Bangalore, India. Ms. Venugopal is currently employed with Microsoft Corporation in Redmond, WA and is part of the “Kids and Education Group”. Her research interests include low power wireless ad hoc networks. Zhengwei (Wesley) Chen received the M.E. in Electrical & Computer Engineering Dept from McMaster University in Canada in 2002. He joined Motorola Inc. as a CDMA2000 system engineer in 2000. In 2002, he joined UTStarcom as a manager of the Global Service Solution Department. He is currently in charge of R&D for Advanced Services related to the TVoIP and Softswitch products. Terry Todd received the B.A.Sc, M.A.Sc and Ph.D degrees in Electrical Engineering from the University of Waterloo in Waterloo, Ontario, Canada. While at Waterloo he also spent 3 years as a Research Associate with the Computer Communications Networks Group (CCNG). During that time he worked on the Waterloo Experimental Local Area Network, which was an early local area network testbed. In 1991 Dr. Todd was on research leave in the Distributed Systems Research Department at AT&T Bell Laboratories in Murray Hill, NJ. He also spent 1998 as a visiting researcher at The Olivetti and Oracle Research Laboratory (ORL) in Cambridge, England. While at ORL he worked on the piconet project, which was an embedded low power wireless network testbed. Dr. Todd is currently a Professor of Electrical and Computer Engineering at McMaster University in Hamilton, Ontario, Canada. At McMaster he has been the Principal Investigator on a number of major research projects in the optical and wireless networking areas. He currently directs a large group working on wireless mesh networks and wireless VoIP. Professor Todd holds the NSERC/RIM/CITO Chair on Pico-Cellular Wireless Internet Access Networks. Dr. Todd’s research interests include metropolitan/local area networks, wireless communications and the performance analysis of computer communication networks and systems. Professor Todd is a Professional Engineer in the province of Ontario. Krishna M. Sivalingam is an Associate Professor in the Dept. of CSEE at University of Maryland, Baltimore County. Previously, he was with the School of EECS at Washington State University, Pullman from 1997 until 2002; and with the University of North Carolina Greensboro from 1994 until 1997. He has also conducted research at Lucent Technologies’ Bell Labs in Murray Hill, NJ, and at AT&T Labs in Whippany, NJ. He received his Ph.D. and M.S. degrees in Computer Science from State University of New York at Buffalo in 1994 and 1990 respectively; and his B.E. degree in Computer Science and Engineering in 1988 from Anna University, Chennai (Madras), India. While at SUNY Buffalo, he was a Presidential Fellow from 1988 to 1991. His research interests include wireless networks, optical wavelength division multiplexed networks, and performance evaluation. He holds three patents in wireless networks and has published several research articles including more than thirty journal publications. He has published an edited book on Wireless Sensor Networks in 2004 and edited books on optical WDM networks in 2000 and 2004. He served as a Guest Co-Editor for special issues of the ACM MONET journal on “Wireless Sensor Networks” in 2003 and 2004; and an issue of the IEEE Journal on Selected Areas in Communications on optical WDM networks (2000). He is co-recipient of the Best Paper Award at the IEEE International Conference on Networks 2000 held in Singapore. His work has been supported by several sources including AFOSR, NSF, Cisco, Intel and Laboratory for Telecommunication Sciences. He is a member of the Editorial Board for ACM Wireless Networks Journal, IEEE Transactions on Mobile Computing, Ad Hoc and Sensor Wireless Networks Journal, and KICS Journal of Computer Networks. He serves as Steering Committee Co-Chair for IEEE/CreateNet International Conference on Broadband Networks (BroadNets) that was created in 2004. He is currently serving as General Co-Vice-Chair for the Second Annual International Mobiquitous conference to be held in San Diego in 2005 and as General Co-Chair for the First IEEE/CreateNet International Conference on Security and Privacy for Emerging Areas in Communication Networks (SecureComm) to be held in Athens, Greece in Sep. 2005. He served as Technical Program Co-Chair for the First IEEE Conference on Sensor and Ad Hoc Communications and Networks (SECON) held at Santa Clara, CA in 2004; as General Co-Chair for SPIE Opticomm 2003 (Dallas, TX) and for ACM Intl. Workshop on Wireless Sensor Networks and Applications (WSNA) 2003 held in conjunction with ACM MobiCom 2003 at San Diego, CA; as Technical Program Co-Chair of SPIE/IEEE/ACM OptiComm conference at Boston, MA in July 2002; and as Workshop Co-Chair for WSNA 2002 held in conjunction with ACM MobiCom 2002 at Atlanta, GA in Sep 2002. He is a Senior Member of IEEE and a member of ACM.  相似文献   

18.
This work presents an analysis of the levitation effect in electrostatic comb fingers and of its possible use for vertical or torsional actuation of micromachined structures. Two different levitational mechanical resonators were designed and fabricated in a thick-polysilicon technology. A study of the dependence of the force intensity on the geometric parameters of the actuators were performed using FEM simulations, and information about critical geometrical parameters in the design of operative levitational actuators were obtained. The devices were characterized and the obtained results were compared with FEM simulations. Antonio Molfese received the M.S. degree cum laude in Electronic Engineering from the University of Pisa, Italy on March 2003. In the summer 2003 he was at IMEC, Belgium for an internship. On November 2003 he received the diploma degree cum laude in Industrial and Information Engineering from Scuola Superiore Sant'Anna di Studi Universitari e Perfezionamento of Pisa, Italy. He is currently pursuing the Ph.D. degree in Information Engineering at University of Pisa and he is working at IEIIT-Sezione di Pisa of Italian National Research Council (CNR) as research assistant. His main research interests include design, modeling and characterization of micro-electro-mechanical systems and microfluidics. Giovanni Pennelli was born on October 23, 1967 in Lucca, Italy. He graduated in 1992, cum laude, in Electronic Engineering. He obtained his Ph.D. in 1997 for a thesis entitled "New Materials for a Silicon-Based Optoelectronics". He moved to the University of Glasgow in April 1997 to work as a Research Assistant in the MBE group concerned with optoelectronic device fabrication and process development. He developed some MBE grown structures for HEMT applications. In September 2000, Dr Pennelli has been appointed assistant professor in the Department of Information Engineering, University of Pisa, Italy, pursuing research in electron beam lithography and nanometer scale process development. Francesco Pieri received the laurea and the Ph.D. degree in Electrical Engineering, both from the University of Pisa, Italy, in 1996 and 2000 respectively. He joined the Department of Information Engineering of the same University as an assistant professor in 2001. His current research interests include applications of porous silicon to sensors and microtechnologies, and development of microelectromechanical systems. Andrea Nannini received his laurea degree in Electronic Engineering from the University of Pisa, Italy, in 1982; He received his Ph.D. degree in 1987 at the end of the first Italian Ph.D. course held by the University of Padova, Italy. From 1988 to 1992 he was a Researcher at the “Scuola Superiore di Studi Universitari e Perfezionamento S. Anna” – Pisa- Italy. Since 1992 he joined the Department of Information Engineering of the University of Pisa as an Associate Professor. Since November 2000 he is a full professor of “Sensor and Microsystem Design”. He is currently chairman of the postgraduate school of Electronic Engineering and vice-chairman of the PhD school of Information Engineering of the University of Pisa. His main research interests concern solid state sensors, microelectronic devices and technologies, MEMS.  相似文献   

19.
Controlled sink mobility for prolonging wireless sensor networks lifetime   总被引:3,自引:0,他引:3  
This paper demonstrates the advantages of using controlled mobility in wireless sensor networks (WSNs) for increasing their lifetime, i.e., the period of time the network is able to provide its intended functionalities. More specifically, for WSNs that comprise a large number of statically placed sensor nodes transmitting data to a collection point (the sink), we show that by controlling the sink movements we can obtain remarkable lifetime improvements. In order to determine sink movements, we first define a Mixed Integer Linear Programming (MILP) analytical model whose solution determines those sink routes that maximize network lifetime. Our contribution expands further by defining the first heuristics for controlled sink movements that are fully distributed and localized. Our Greedy Maximum Residual Energy (GMRE) heuristic moves the sink from its current location to a new site as if drawn toward the area where nodes have the highest residual energy. We also introduce a simple distributed mobility scheme (Random Movement or RM) according to which the sink moves uncontrolled and randomly throughout the network. The different mobility schemes are compared through extensive ns2-based simulations in networks with different nodes deployment, data routing protocols, and constraints on the sink movements. In all considered scenarios, we observe that moving the sink always increases network lifetime. In particular, our experiments show that controlling the mobility of the sink leads to remarkable improvements, which are as high as sixfold compared to having the sink statically (and optimally) placed, and as high as twofold compared to uncontrolled mobility. Stefano Basagni holds a Ph.D. in electrical engineering from the University of Texas at Dallas (December 2001) and a Ph.D. in computer science from the University of Milano, Italy (May 1998). He received his B.Sc. degree in computer science from the University of Pisa, Italy, in 1991. Since Winter 2002 he is on faculty at the Department of Electrical and Computer Engineering at Northeastern University, in Boston, MA. From August 2000 to January 2002 he was professor of computer science at the Department of Computer Science of the Erik Jonsson School of Engineering and Computer Science, The University of Texas at Dallas. Dr. Basagni’s current research interests concern research and implementation aspects of mobile networks and wireless communications systems, Bluetooth and sensor networking, definition and performance evaluation of network protocols and theoretical and practical aspects of distributed algorithms. Dr. Basagni has published over four dozens of referred technical papers and book chapters. He is also co-editor of two books. Dr. Basagni served as a guest editor of the special issue of the Journal on Special Topics in Mobile Networking and Applications (MONET) on Multipoint Communication in Wireless Mobile Networks, of the special issue on mobile ad hoc networks of the Wiley’s Interscience’s Wireless Communications & Mobile Networks journal, and of the Elsevier’s journal Algorithmica on algorithmic aspects of mobile computing and communications. Dr. Basagni serves as a member of the editorial board and of the technical program committee of ACM and IEEE journals and international conferences. He is a senior member of the ACM (including the ACM SIGMOBILE), senior member of the IEEE (Computer and Communication societies), and member of ASEE (American Society for Engineering Education). Alessio Carosi received the M.S. degree “summa cum laude” in Computer Science in 2004 from Rome University “La Sapienza.” He is currently a Ph.D. candidate in Computer Science at Rome University “La Sapienza.” His research interests include protocols for ad hoc and sensor networks, underwater systems and delay tolerant networking. Emanuel Melachrinoudis received the Ph.D. degree in industrial engineering and operations research from the University of Massachusetts, Amherst, MA. He is currently the Director of Industrial Engineering and Associate Chairman of the Department of Mechanical and Industrial Engineering at Northeastern University, Boston, MA. His research interests are in the areas of network optimization and multiple criteria optimization with applications to telecommunication networks, distribution networks, location and routing. He is a member of the Editorial Board of the International Journal of Operational Research. He has published in journals such as Management Science, Transportation Science, Networks, European Journal of Operational Research, Naval Research Logistics and IIE Transactions. Chiara Petrioli received the Laurea degree “summa cum laude” in computer science in 1993, and the Ph.D. degree in computer engineering in 1998, both from Rome University “La Sapienza,” Italy. She is currently Associate Professor with the Computer Science Department at Rome University “La Sapienza.” Her current work focuses on ad hoc and sensor networks, Delay Tolerant Networks, Personal Area Networks, Energy-conserving protocols, QoS in IP networks and Content Delivery Networks where she contributed around sixty papers published in prominent international journals and conferences. Prior to Rome University she was research associate at Politecnico di Milano and was working with the Italian Space agency (ASI) and Alenia Spazio. Dr. Petrioli was guest editor of the special issue on “Energy-conserving protocols in wireless Networks” of the ACM/Kluwer Journal on Special Topics in Mobile Networking and Applications (ACM MONET) and is associate editor of IEEE Transactions on Vehicular Technology, the ACM/Kluwer Wireless Networks journal, the Wiley InterScience Wireless Communications & Mobile Computing journal and the Elsevier Ad Hoc Networks journal. She has served in the organizing committee and technical program committee of several leading conferences in the area of networking and mobile computing including ACM Mobicom, ACM Mobihoc, IEEE ICC,IEEE Globecom. She is member of the steering committee of ACM Sensys and of the international conference on Mobile and Ubiquitous Systems: Networking and Services (Mobiquitous) and serves as member of the ACM SIGMOBILE executive committee. Dr. Petrioli was a Fulbright scholar. She is a senior member of IEEE and a member of ACM. Z. Maria Wang received her Bachelor degree in Electrical Engineering with the highest honor from Beijing Institute of Light Industry in China, her M.S. degree in Industrial Engineering/Operations Research from Dalhousie University, Canada and her Ph.D. in Industrial Engineering/Operations Research from Northeastern University, Boston. She served as a R&D Analyst for General Dynamics. Currently MS. Wang serves as an Optimization Analyst with Nomis Solutions, Inc.  相似文献   

20.
Designers of radio-frequency inductively-degenerated CMOS low-noise-amplifiers have usually not followed the guidelines for achieving minimum noise figure. Nonetheless, state-of-the-art implementations display noise figure values very close to the theoretical minimum. In this paper, we point out that this is due to the effect of the parasitic overlap capacitances in the MOS device. In particular, we show that overlap capacitances lead to a significant induced-gate-noise reduction, especially when deep sub-micron CMOS processes are used.Paolo Rossi was born in Milan, Italy, in 1975. He received the Laurea degree (summa cum laude) in electrical engineering from the University of Pavia, Pavia, Italy, in 2000, where he is currently working toward the Ph.D. degree. His research interests are in the field of analog integrated circuits for wireless transceivers in CMOS and BiCMOS technology, with particular focus on the analysis and design of LNA and mixer for multi-standard applications.Francesco Svelto received the Laurea and Ph.D. degrees in electrical engineering from the University of Pavia, Pavia, Italy, in 1991 and 1995, respectively. From 1996 to 1997, he held a grant from STMicroelectronics to design CMOS RF circuits. In 1997, he was appointed Assistant Professor at the University of Bergamo, Italy, and in 2000, he joined the University of Pavia, where he is an Associate Professor. His current research interests are in the field of RF design and high-frequency integrated circuits for telecommunications. Dr. Svelto has been a member of the technical program committee of the IEEE Custom Integrated Circuits Conference since 2000 and the Bipolar/BiCMOS Circuits and Technology Meeting (BCTM) since 2003, and the European Solid State Circuits Conference in 2002. He served as Guest Editor of the March 2003 special issue of the IEEE Journal of Solid-State Circuits, of which he is currently an Associate Editor.Andrea Mazzanti was born in Modena (Italy) in 1976. He received the Laurea degree (summa cum Laude) in Electrical Engineering from the University of Modena and Reggio Emilia, Modena, Italy in 2001. Since 2001 he is pursuing his PhD in Electrical Engineering at University of Modena and Reggio Emilia, Italy. His major research interest are modelling of microwave semiconductor devices and design of CMOS RF integrated circuits, with particular focus on low noise oscillators and analog frequency dividers. During the summer of 2003 he was with Agere Systems, Allentown, PA as an internship student, working on the design of an highly integrated CMOS FM transmitter.Pietro Andreani received the M.S.E.E. from the University of Pisa, Italy, in 1988. He joined the Dept. of Applied Electronics, Lund University, Sweden, in 1990, where he contributed to the development of software tools for digital ASIC design. After working at the Dept. of Applied Electronics, University of Pisa, as a CMOS IC designer during 1994, he rejoined the Dept. of Applied Electronics in Lund as an Associate Professor, where he was responsible for the analog IC course package between 1995 and 2001, and where he received the Ph.D. degree in 1999. He is currently a Professor at the Center for Physical Electronics, ØrstedDTU, Technical University of Denmark, Kgs. Lyngby, Denmark, with analog/RF CMOS IC design as main research field.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号