首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Cathodoluminescence from GaN x As1?x layers (0 ≤ x ≤ 0.03) was measured at photon energies ranging from the intrinsic absorption edge to 3 eV at room temperature. An additional emission band was visible in the visible range of the cathodoluminescence spectra. The intensity of this band is two orders of magnitude lower than the edge-emission intensity. The photon energy corresponding to the peak of this band and its FWHM are virtually independent of x and equal to ~2.1 and 0.6–0.7 eV, respectively. This emission is related to indirect optical transitions of electrons from the L 6c and Δ conduction-band minimums to the Γ15 valence-band maximum.  相似文献   

2.
The search for alternative energy sources is at the forefront of applied research. In this context, thermoelectricity, i.e., direct conversion of thermal into electrical energy, plays an important role, particularly for exploitation of waste heat. Materials for such applications should exhibit thermoelectric potential and mechanical stability. PbTe-based compounds include well-known n-type and p-type compounds for thermoelectric applications in the 50°C to 600°C temperature range. This paper is concerned with the mechanical and transport properties of p-type Pb0.5Sn0.5Te:Te and PbTe<Na> samples, both of which have a hole concentration of ∼1 × 1020 cm−3. The ZT values of PbTe<Na> were found to be higher than those of Pb0.5Sn0.5Te:Te, and they exhibited a maximal value of 0.8 compared with 0.5 for Pb0.5Sn0.5Te:Te at 450°C. However, the microhardness value of 49 HV found for Pb0.5Sn0.5Te:Te was closer to that of the mechanically stable n-type PbTe (30 HV) than to that of PbTe<Na> (71 HV). Thus, although lower ZT values were obtained, from a mechanical point of view Pb0.5Sn0.5Te:Te is preferable over PbTe<Na> for practical applications.  相似文献   

3.
The magnetoresistance of a lightly doped p-Ge1?xSix alloy is studied in the range of compositions x = 1–2 at %. The results are compared with the available data for lightly doped p-Ge. The studies have been carried out using ESR measurements at a frequency of 10 GHz in the temperature range 10–120 K. It is established that micrononuniformity in the distribution of Si in the Ge lattice (Si clusters) suppresses the interference part of the anomalous magnetoresistance and, in addition, results in an averaging of the effects of light and heavy holes. This observation suggests a sharp decrease in the inelastic scattering time in the case of a Ge1?xSix solid solution as compared to that of Ge.  相似文献   

4.
The electrochemical behavior of nonaqueous dimethyl sulfoxide solutions of BiIII, TeIV, and SbIII was investigated using cyclic voltammetry. On this basis, Bi x Sb2−x Te y thermoelectric films were prepared by the potentiodynamic electrodeposition technique in nonaqueous dimethyl sulfoxide solution, and the composition, structure, morphology, and thermoelectric properties of the films were analyzed. Bi x Sb2−x Te y thermoelectric films prepared under different potential ranges all possessed a smooth morphology. After annealing treatment at 200°C under N2 protection for 4 h, all deposited films showed p-type semiconductor properties, and their resistances all decreased to 0.04 Ω to 0.05 Ω. The Bi0.49Sb1.53Te2.98 thermoelectric film, which most closely approaches the stoichiometry of Bi0.5Sb1.5Te3, possessed the highest Seebeck coefficient (85 μV/K) and can be obtained under potentials of −200 mV to −400 mV.  相似文献   

5.
6.
The search for alternative energy sources is presently at the forefront of applied research. In this context, thermoelectricity for direct energy conversion from thermal to electrical energy plays an important role. This paper is concerned with the development of highly efficient p-type Ge x Pb1−x Te alloys for thermoelectric applications, using spark plasma sintering. The carrier concentration of GeTe was varied by alloying of PbTe and/or by Bi2Te3 doping. Very high ZT values up to ~1.8 at 500°C were obtained by doping Pb0.13Ge0.87Te with 3 mol% Bi2Te3.  相似文献   

7.
The electrical parameters of polycrystalline Sm1–xEuxS compounds are studied. The conductivity, concentration of free electrons, their mobility, and the conductivity activation energy are measured as functions of the quantity x. The structural parameters of the compounds are determined. A heterostructure is fabricated with x in the range from 0 to 0.3, and the electrical voltage generated by the structure, when heated to a temperature of T = 450 K, due to the thermovoltaic effect is measured. This voltage is found to be 55 mV. A method for measuring the thermally induced voltage is described. The method provides a means for separating the thermovoltaic effect from the Seebeck effect.  相似文献   

8.
Optical studies of unstrained narrow-gap Al x In1 − x Sb semiconductor alloy layers are carried out. The layers are grown by molecular-beam epitaxy on semi-insulating GaAs substrates with an AlSb buffer. The composition of the alloys is varied within the range of x = 0–0.52 and monitored by electron probe microanalysis. The band gap E g is determined from the fundamental absorption edge with consideration for the nonparabolicity of the conduction band. The refined bowing parameter in the experimental dependence E g (x) for the Al x In1 − x Sb alloys is 0.32 eV. This value is by 0.11 eV smaller than the commonly referred one.  相似文献   

9.
The electrical properties of chromium-doped n-Pb1?x Ge x Te alloys (x = 0.02–0.13) have been studied. A decrease in the free-electron concentration and a metal-insulator transition are observed as the germanium content of alloys increases. This is due to the Fermi level pinning by the chromium impurity level and to the flow of electrons from the conduction band to the impurity level. The experimental data obtained are used to calculate, in terms of the two-band Kane dispersion law, the dependences of the electron concentration and Fermi energy on the germanium content in the alloy. The motion rate of the chromium-related level with respect to the conduction band bottom is determined and a model of variation of the electronic structure with the matrix composition is suggested.  相似文献   

10.
Structural properties of Hg1–x Cd x Te are investigated by using first-principles calculations based on density functional theory. An energetically minimized and geometrically optimized model for Hg1–x Cd x Te was formulated. A virtual crystal approximation model for Hg1–x Cd x Te produced a poor fit to experimental lattice parameters and Vegard’s law. However, the virtual crystal approximation model provides reasonably accurate values for the band gap␣energy. An ordered alloy approximation model produced a good fit to Hg1–x Cd x Te lattice parameters and followed Vegard’s law. The ordered alloy approximation also produced a bimodal distribution in Hg-Te and Cd-Te bond lengths in agreement with experimental results.  相似文献   

11.
Undoped mid-wave infrared Hg1?xCdxSe epitaxial layers have been grown to a nominal thickness of 8–14 μm on GaSb (211)B substrates by molecular beam epitaxy (MBE) using constant beam equivalent pressure ratios. The effects of growth temperature from 70°C to 120°C on epilayer quality and its electronic parameters has been examined using x-ray diffraction (XRD) rocking curves, atomic force microscopy, Nomarski optical imaging, photoconductive decay measurements, and variable magnetic field Hall effect analysis. For samples grown at 70°C, the measured values of XRD rocking curve full width at half maximum (FWHM) (116 arcsec), root mean square (RMS) surface roughness (2.7 nm), electron mobility (6.6?×?104 cm2 V?1 s?1 at 130 K), minority carrier lifetime (~?2 μs at 130 K), and background n-type doping (~?3?×?1016 cm?3 at 130 K), indicate device-grade material quality that is significantly superior to that previously published in the open literature. All of these parameters were found to degrade monotonically with increasing growth temperature, although a reasonably wide growth window exists from 70°C to 90°C, within which good quality HgCdSe can be grown via MBE.  相似文献   

12.
Using the solution of the 2D Schrödinger equation, systematic features of distribution of charge carriers in the Si/Si1 ? x Ge x nanostructures and variations in the efficiency of radiative recombination when pyramidal 2D clusters are transformed into 3D dome clusters with increasing thickness of nanolayers are established. The effect of the composition of the layers on the efficiency of the elastic stress in the structure and, as a consequence, the variation in conduction bands and valence band of the Si1 ? x Ge x nanostructures is taken into account. On realization of the suggested kinetics model, which describes recombination processes in crystalline structures, saturation of radiation intensity with increasing the pump intensity caused by an increase in the contribution of the Auger recombination is observed. A decrease in the contribution of the nonradiative Auger recombination is attained by decreasing the injection rate of carriers into the clusters, and more precisely, by an increase in the cluster concentration and an increase in the rate of radiative recombination.  相似文献   

13.
Single crystals of the ternary system Bi2−x Tl x Se3 (nominally x = 0.0 to 0.1) were prepared using the Bridgman technique. Samples with varying content of Tl were characterized by measurement of lattice parameters, electrical conductivity σ ⊥c, Hall coefficient R H(Bc), and Seebeck coefficient ST⊥c). The measurements indicate that incorporation of Tl into Bi2Se3 lowers the concentration of free electrons and enhances their mobility. This effect is explained within the framework of the point defects in the crystal lattice, with formation of substitutional defects of thallium in place of bismuth (TlBi) and a decrease in the concentration of selenium vacancies (VSe + 2 V_{\rm{Se}}^{ + 2} ). The temperature dependence of the power factor σS 2 of the samples is also discussed. As a consequence of the thallium doping we observe a significant increase of the power factor compared with the parent Bi2Se3.  相似文献   

14.
Polycrystalline L4Sb3 (L = La, Ce, Sm, and Yb) and Yb4−x Sm x Sb3, which crystallizes in the anti-Th3P4 structure type (I-43d no. 220), were synthesized via high-temperature reaction. Structural and chemical characterization were performed by x-ray diffraction and electronic microscopy with energy-dispersive x-ray analysis. Pucks were densified by spark plasma sintering. Transport property measurements showed that these compounds are n-type with low Seebeck coefficients, except for Yb4Sb3, which shows semimetallic behavior with hole conduction above 523 K. By partially substituting Yb by a trivalent rare earth we successfully improved the thermoelectric figure of merit of Yb4Sb3 up to 0.7 at 1273 K.  相似文献   

15.
Mercury cadmium telluride (HgCdTe, or MCT) with low n-type indium doping concentration offers a means for obtaining high performance infrared detectors. Characterizing carrier transport in materials with ultra low doping (ND?=?1014 cm?3 and lower), and multi-layer material structures designed for infrared detector devices, is particularly challenging using traditional methods. In this work, Hall effect measurements with a swept B-field were used in conjunction with a multi-carrier fitting procedure and Fourier-domain mobility spectrum analysis to analyze multi-layered MCT samples. Low temperature measurements (77 K) were able to identify multiple carrier species, including an epitaxial layer (x?=?0.2195) with n-type carrier concentration of n?=?1?×?1014 cm?3 and electron mobility of μ?=?280000 cm2/Vs. The extracted electron mobility matches or exceeds prior empirical models for MCT, illustrating the outstanding material quality achievable using current epitaxial growth methods, and motivating further study to revisit previously published material parameters for MCT carrier transport. The high material quality is further demonstrated via observation of the quantum Hall effect at low temperature (5 K and below).  相似文献   

16.
Thin Pb x Sn1 − x S films are obtained by the “hot-wall” method at substrate temperatures of 210–330°C. The microstructure, composition, morphology, and electrical characteristics of films are investigated. On the basis of the obtained films, photosensitive In/p-Pb x Sn1 − x S Schottky barriers are fabricated for the first time. The photosensivity spectra of these structures are investigated, and the character of interband transitions and the band-gap values are determined from them. The conclusion is drawn that Pb x Sn1 − x S thin polycrystalline films may be used in solar-energy converters.  相似文献   

17.
The effects of switching and electroluminescence as well as the interrelation between these effects in single crystals of GaS x Se1?x alloys are detected and studied. It is established that the threshold voltage for switching depends on temperature, resistivity, and composition of alloys, and also on the intensity and spectrum of photoactive light. As a result, a phototrigger effect is observed; this effect arises under irradiation with light from the fundamental-absorption region. Electroluminescence is observed in the subthreshold region of the current-voltage characteristic; the electroluminescence intensity decreases drastically to zero as the sample is switched from a high-resistivity state to a low-resistivity state. Experimental data indicating that the electroluminescence and the switching effect are based on the injection mechanism (as it takes place in other layered crystals of the III-V type) are reported.  相似文献   

18.
A thin film of Ge-rich Ge x Si1−x on a (100) Si substrate was synthesized by ion implantation followed by thermal oxidation. Proper oxidation conditions were maintained to produce a film with Ge atomic content of more than 95%, confirmed by both high-resolution Rutherford backscattering spectrometry (RBS) and Raman spectroscopy. The strain state of the Ge-rich thin film is a function of its thickness, as determined by the implantation fluence. The use of Raman spectroscopy to monitor the composition and strain state of the Ge thin film formed is discussed.  相似文献   

19.
A detailed study is presented of multicarrier transport properties in liquid-phase epitaxy (LPE)-grown n-type HgCdTe films using advanced mobility spectrum analysis techniques over the temperature range from 95 K to 300 K. Three separate electron species were identified that contribute to the total conduction, and the temperature-dependent characteristics of carrier concentration and mobility were extracted for each individual carrier species. Detailed analysis allows the three observed contributions to be assigned to carriers located in the bulk long-wave infrared (LWIR) absorbing layer, the wider-gap substrate/HgCdTe transition layer, and a surface accumulation layer. The activation energy of the dominant high-mobility LWIR bulk carrier concentration in the high temperature range gives a very good fit to the Hansen and Schmit expression for intrinsic carrier concentration in HgCdTe with a bandgap of 172 meV. The mobility of these bulk electrons follows the classic μ ~ T −3/2 dependence for the phonon scattering regime. The much lower sheet densities found for the other two, lower-mobility electron species show activation energies of the order of ~20 meV, and mobilities that are only weakly dependent on temperature and consistent with expected values for the wider-bandgap transition layer and a surface accumulation layer.  相似文献   

20.
Photoluminescence (PL) of Hg1 − x Cd x Te-based heterostructures grown by molecular-beam epitaxy (MBE) on GaAs and Si substrates has been studied. It is shown that a pronounced disruption of the long-range order in the crystal lattice is characteristic of structures of this kind. It is demonstrated that the observed disordering is mostly due to the nonequilibrium nature of MBE and can be partly eliminated by postgrowth thermal annealing. Low-temperature spectra of epitaxial layers and structures with wide potential wells are dominated by the recombination peak of an exciton localized in density-of-states tails; the energy of this peak is substantially lower than the energy gap. In quantum-well (QW) structures at low temperatures, the main PL peak is due to carrier recombination between QW levels and the energy of the emitted photon is strictly determined by the effective (with the QW levels taken into account) energy gap.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号