首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 31 毫秒
1.
Epitaxial CdTe thin films were grown on GaAs/Si(001) substrates by metalorganic chemical vapor deposition using thin GaAs as a buffer layer. The interfaces were investigated using high-resolution transmission electron microscopy and geometric phase analysis strain mapping. It was observed that dislocation cores exist at the CdTe/GaAs interface with periodic distribution. The spacing of the misfit dislocation was measured to be about 2?nm, corresponding to the calculated spacing of a misfit dislocation (2.6?nm) in CdTe/Si with Burgers vector of a[110]/2. From these results, it is suggested that the GaAs buffer layer effectively absorbs the strain originating from the large lattice mismatch between the CdTe thin film and Si substrate with the formation of periodic structural defects.  相似文献   

2.
We discuss various possibilities for determining the orientation of CdTe layers grown on (001) GaAs and in particular, determining the (001) orientation. This growth orientation is characterized by a three dimensional growth mechanism which controls the growth in the (111) orientation. We show that a thin layer of ZnTe deposited directly on the oxide free GaAs surface can be used to determine the (001) orientation, eliminate (111) phases and enhance a two dimensional growth of the CdTe layer, resulting in an improved crystalline quality and a smooth surface morphology. CdTe layers grown in the (111) direction on oxide free (001) GaAs substrates contain (111) microtwins and an intermixed (001) phase. This work is a part of a Ph.D. thesis to be submitted to the Weizmann Institute of Science.  相似文献   

3.
A microstructural study of HgCdTe/CdTe/GaAs(211)B and CdTe/GaAs(211)B heterostructures grown using molecular beam epitaxy (MBE) was carried out using transmission electron microscopy and small-probe microanalysis. High-quality MBE-grown CdTe on GaAs(211)B substrates was demonstrated to be a viable composite substrate platform for HgCdTe growth. In addition, analysis of interfacial misfit dislocations and residual strain showed that the CdTe/GaAs interface was fully relaxed except in localized regions where GaAs surface polishing had caused small pits. In the case of HgCdTe/CdTe/GaAs(211)B, the use of thin HgTe buffer layers between HgCdTe and CdTe for improving the HgCdTe crystal quality was also investigated.  相似文献   

4.
We studied dislocation etch pit density (EPD) profiles in HgCdTe(lOO) layers grown on GaAs(lOO) by metalorganic chemical vapor deposition. Dislocation profiles in HgCdTe(lll)B and HgCdTe(lOO) layers differ as follows: Misfit dislocations in HgCdTe(lll)B layers are concentrated near the HgCdTe/CdTe interfaces because of slip planes parallel to the interfaces. Away from the HgCdTe/CdTe interface, the HgCdTe(111)B dislocation density remains almost constant. In HgCdTe(lOO) layers, however, the dislocations propagate monotonically to the surface and the dislocation density decreases gradually as dislocations are incorporated with increasing HgCdTe(lOO) layer thicknesses. The dislocation reduction was small in HgCdTe(lOO) layers more than 10 μm from the HgCdTe/CdTe interface. The CdTe(lOO) buffer thickness and dislocation density were similarly related. Since dislocations glide to accommodate the lattice distortion and this movement increases the probability of dislocation incorporation, incorporation proceeds in limited regions from each interface where the lattice distortion and strain are sufficient. We obtained the minimum EPD in HgCdTe(100) of 1 to 3 x 106 cm-2 by growing both the epitaxial layers more than 8 μm thick.  相似文献   

5.
The growth characteristics and crystalline quality of thick (100) CdTe-epitaxial layers grown on (100) GaAs and (100) GaAs/Si substrates in a metal-organic vapor-phase epitaxy (MOVPE) system for possible applications in x-ray imaging detectors were investigated. High-crystalline-quality epitaxial layers of thickness greater than 100 μm could be readily obtained on both types of substrates. The full width at half maximum (FWHM) values of the x-ray double-crystal rocking curve (DCRC) decreased rapidly with increasing layer thickness, and remained around 50–70 arcsec for layers thicker than 30 μm on both types of substrates. Photoluminescence (PL) measurement showed high-intensity excitonic emission with very small defect-related peaks from both types of epilayers. Stress analysis carried out by performing PL as a function of layer thickness showed the layers were strained and a small amount of residual stress, compressive in CdTe/GaAs and tensile in CdTe/GaAs/Si, remained even in the thick layers. Furthermore, the resistivity of the layers on the GaAs substrate was found to be lower than that of layers on GaAs/Si possibly because of the difference of the activation of incorporated impurity from the substrates because of the different kinds of stress existing on them. A heterojunction diode was then fabricated by growing a CdTe epilayer on an n+-GaAs substrate, which exhibited a good rectification property with a low value of reverse-bias leakage current even at high applied biases.  相似文献   

6.
Growth characteristics of (100) HgCdTe (MCT) layers by MOVPE at low temperature of 275°C were studied using ditertiarybutyltelluride as a tellurium precursor. Growths were conducted in a vertical narrow-spacing growth cell at atmospheric pressure. Cd composition of MCT layers were controlled from 0 to 0.98 using dimethylcadmium (DMCd) flow. The growth rate was constant for increase of DMCd flow. During the growth, Cd was incorporated preferentially into the MCT layers. Enhancement of Cd incorporation in the presence of Hg was also observed. Crystal quality and electrical properties were also evaluated, which showed that high quality MCT layers can be grown at 275°C. Strain in CdTe layers grown at 425 and 275°C was also evaluated. Lattice parameter of layers grown at 425°C approached bulk value at thickness of 5 μm, while layers grown at 275°C relaxed at 1 μm. The rapid strain relaxation of layers grown at 275°C was considered due to the layer growth on the strain relaxed buffer layer. The effect of the thermal stress on the relaxation of CdTe lattice strain was also discussed.  相似文献   

7.
CdTe(lll)B layers have been grown on misoriented Si(001). Twin formation inside CdTe(lll)B layer is very sensitive to the substrate tilt direction. When Si(001) is tilted toward [110] or [100], a fully twinned layer is obtained. When Si(001) is tilted toward a direction significantly away from [110], a twin-free layer is obtained. Microtwins inside the CdTe(111)B layers are overwhelmingly dominated by the lamellar twins. CdTe(111)B layers always start with heavily lamellar twinning. For twin-free layers, the lamellar twins are gradually suppressed and give way to twin-free CdTe(111)B layer. The major driving forces for suppressing the lamellar twinning are the preferential orientation of CdTe[11-2] along Si[1-10] and lattice relaxation. Such preferential orientation is found to exist for the CdTe(111)B layers grown on Si(001) tilted toward a direction between [110] and [100].  相似文献   

8.
The growth of CdTe buffer layers on (211)B GaAs substrates by organometallic vapor phase epitaxy (OMVPE) was studied, and it was found that, depending on the growth conditions, either the (211) or (133) epitaxial orientation could be formed. In some cases, an epilayer showing a mixed (211) and (133) orientation was also observed. The influence of several growth parameters on the orientation of the CdTe layer was investigated, and it was found that the Te/Cd ratio, together with the growth temperature, have the most significant effect in determining the epilayer orientation. From these results, it was then possible to select nominally optimized growth conditions for CdTe buffer layers of both orientations. (Hg,Cd)Te layers of the same orientations could then be grown and characterized. Although double crystal x-ray diffraction measurements indicated a somewhat better crystalline perfection in the (133) (Hg,Cd)Te layers, these layers showed a poor surface morphology compared to the (211) orientation. Measurement of etch pit densities also indicated defect densities to be typically half an order of magnitude higher in the (133) orientation. Diodes were formed by ion implantation in both orientations and significantly better results were obtained on the (211) (Hg,Cd)Te layers.  相似文献   

9.
采用分子束外延方法,在GaAs(111)B衬底上,生长CdTe薄膜,以求研制出用于液相外延生长碲镉汞(HgCdTe)薄膜的CdTe/GaAs(111)B复合衬底.通过理论分析和实验探索,优化了生长温度和Te/Cd束流比等重要生长参数,获得了质量较好的CdTe薄膜,再通过循环热处理,使CdTe/GaAs(111)B复合衬底的质量得到进一步的提高,X-射线回摆曲线半峰宽(FWHM)有明显的降低.为LPE-HgCdTe薄膜的生长打下了较好基础.  相似文献   

10.
CdTe layers have been grown by molecular beam epitaxy on 3 inch nominal Si(211) under various conditions to study the effect of growth parameters on the structural quality. The microstructure of several samples was investigated by high resolution transmission electron microscopy (HRTEM). The orientation of the CdTe layers was affected strongly by the ZnTe buffer deposition temperature. Both single domain CdTe(133)B and CdTe(211)B were obtained by selective growth of ZnTe buffer layers at different temperatures. We demonstrated that thin ZnTe buffer layers (<2 nm) are sufficient to maintain the (211) orientation. CdTe deposited at ∼300°C grows with its normal lattice parameter from the onset of growth, demonstrating the effective strain accommodation of the buffer layer. The low tilt angle (<1°) between CdTe[211] and Si[211] indicates that high miscut Si(211) substrates are unnecessary. From low temperature photoluminescence, it is shown that Cd-substituted Li is the main residual impurity in the CdTe layer. In addition, deep emission bands are attributed to the presence of AsTe and AgCd acceptors. There is no evidence that copper plays a role in the impurity contamination of the samples.  相似文献   

11.
We present the results of a detailed study of the changes that occur on CdTe buffer layer surfaces grown on ZnTe/Si(211) and GaAs(211)B during the routine thermal cyclic annealing (TCA) process. Observations indicate that CdTe buffer layer surfaces are Te saturated when the TCA is performed under Te overpressure. In the absence of Te flux during the TCA step, the CdTe surface loses CdTe congruently and the typical CdTe nanowires show the presence of nodules on their surfaces. The observed changes in reflection high-energy electron diffraction patterns during TCA are explained in terms of surface chemistry and topography observations. Overall, the Te overpressure is necessary to maintain a smoother and pristine surface to continue the molecular beam epitaxy (MBE) growth.  相似文献   

12.
A comparative analysis of multiperiod ZnTe/CdTe superlattices with the CdTe quantum dots grown by molecular beam epitaxy on the GaAs substrate with the ZnTe and CdTe buffer layers is carried out. The elastic-stress-induced shifts of eigenfrequencies of the modes of the CdTe- and ZnTe-like vibrations of materials forming similar superlattices but grown on different buffer ZnTe and CdTe layers are compared. The conditions of formation of quantum dots in the ZnTe/CdTe superlattices on the ZnTe and CdTe buffer layers differ radically.  相似文献   

13.
ZnTe, CdTe, and the ternary alloy CdZnTe are important semiconductor materials used widely for the detection of an important range of electromagnetic radiation as gamma ray and X-ray. Although, recently these materials have acquired renewed importance due to the new explored nanolayer properties of modern devices. In addition, as shown in this work they can be grown using uncomplicated synthesis techniques based on the deposition in vapour phase of the elemental precursors. This work presents the results obtained from the deposition of nanolayers of these materials using the precursor vapour on GaAs and GaSb (001) substrates. This growth technique, extensively known as atomic layer deposition (ALD), allows the layers growth with nanometric dimension. The main results presented in this work are the used growth parameters and the results of the structural characterization of the layers by the means of Raman spectroscopy measurements. Raman scattering shows the peak corresponding to longitudinal optical (LO)-ZnTe, which is weak and slightly redshift in comparison with that reported for the ZnTe bulk at 210 cm–1. For the case of the CdTe nanolayer, Raman spectra presented the LO-CdTe peak, which is indicative of the successful growth of the layer. Its weak and slightly redshift in comparison with that reported for the CdTe bulk can be related with the nanometric characteristic of this layer. The performed high-resolution X-ray diffraction (HR-XRD) measurement allows to study some important characteristics such as the crystallinity of the grown layer. In addition, the HR-XRD measurement suggests that the crystalline quality has dependence on the growth temperature.  相似文献   

14.
The effect of in-situ thermal cycle annealing (TCA) has been investigated for GaN growth on GaAs(lOO), GaAs(111) and sapphire substrates. X-ray diffractometry (XRD) and surface morphology studies were performed for this purpose. Enhanced cubic phase characteristics were observed by employing annealingfor GaN layers grown on (001) GaAs. The thickness of the layer subject to annealing is critical in determining the phase of the subsequently grown layer. Thin initial layers appear to permit maintenance of the cubic phase characteristics shown by the substrate, while hexagonal phase characteristics are manifested for thick initial layers. Higher temperature of annealing of thick pre-annealed layers results in changes from mixed cubic/hexagonal phase to pure hexagonal phase. Growth on GaAs(111) substrates showed single cubic phase characteristics and similar enhancement of crystal quality by using TCA as for layers on GaAs(OOl). Micro-cracks were found to be present after TCA on GaAs(lll) substrates. Thermal cycling also appears to be beneficial for layers grown on sapphire substrates.  相似文献   

15.
High-quality, single-crystal epitaxial films of CdTe(112)B and HgCdTe(112)B have been grown directly on Si(112) substrates without the need for GaAs interfacial layers. The CdTe and HgCdTe films have been characterized with optical microscopy, x-ray diffraction, wet chemical defect etching, and secondary ion mass spectrometry. HgCdTe/Si infrared detectors have also been fabricated and tested. The CdTe(112)B films are highly specular, twin-free, and have x-ray rocking curves as narrow as 72 arc-sec and near-surface etch pit density (EPD) of 2 × 106 cm−2 for 8 μm thick films. HgCdTe(112)B films deposited on Si substrates have x-ray rocking curve FWHM as low as 76 arc-sec and EPD of 3-22 × 106 cm−2. These MBE-grown epitaxial structures have been used to fabricate the first high-performance HgCdTe IR detectors grown directly on Si without use of an intermediate GaAs buffer layer. HgCdTe/Si infrared detectors have been fabricated with 40% quantum efficiency and R0A = 1.64 × 104 Ωm2 (0 FOV) for devices with 7.8 μm cutoff wavelength at 78Kto demonstrate the capability of MBE for growth of large-area HgCdTe arrays on Si.  相似文献   

16.
Direct growth of high-quality, thick CdTe (211) epilayers, with thickness up to 100 μm, on Si (211) substrates in a vertical metalorganic vapor phase epitaxy system is reported. In order to obtain homo-orientation growth on Si substrates, pretreatment of the substrates was carried out in a separate chamber by annealing them together with pieces of GaAs at 800–900°C in a hydrogen environment. Grown epilayers had very good substrate adhesion. The full-width at half-maximum (FWHM) value of the x-ray double-crystal rocking curve from the CdTe (422) reflection decreased rapidly with increasing layer thickness and remained between 140–200 arcsec for layers >18 μm. Photoluminescence measurement at 4.2 K showed high-intensity, bound excitonic emission and very small defect-related deep emissions, indicating the high crystalline quality of the grown layers. Furthermore, a CdTe/n+-Si heterojunction diode was fabricated that exhibited clear rectifying behavior.  相似文献   

17.
In this work, GaSb is proposed as a new alternative substrate for the growth of HgCdTe via molecular beam epitaxy (MBE). Due to the smaller mismatch in both lattice constant and coefficient of thermal expansion between GaSb and HgCdTe, GaSb presents a better alternative substrate for the epitaxial growth of HgCdTe, in comparison to alternative substrates such as Si, Ge, and GaAs. In our recent efforts, a CdTe buffer layer technology has been developed on GaSb substrates via MBE. By optimizing the growth conditions (mainly growth temperature and VI/II flux ratio), CdTe buffer layers have been grown on GaSb substrates with material quality comparable to, and slightly better than, CdTe buffer layers grown on GaAs substrates, which is one of the state-of-the-art alternative substrates used in growing HgCdTe for the fabrication of mid-wave infrared detectors. The results presented in this paper indicate the great potential of GaSb to become the next generation alternative substrate for HgCdTe infrared detectors, demonstrating MBE-grown CdTe buffer layers with rocking curve (double crystal x-ray diffraction) full width at half maximum of ~60 arcsec and etch pit density of ~106 cm?2.  相似文献   

18.
In this paper, we report on the atomic layer epitaxy (ALE) of CdTe on GaAs and Si by the organometallic vapor phase epitaxial process at atmospheric pressure. Self-limiting growth at one monolayer was obtained over the temperature range from 250°C to 320°C, under a wide range of reactant pressure conditions. A study of growth mechanism indicates that DMCd decomposes into Cd on the surface and the Te precursors react catalytically on the Cd covered surface. We have used this ALE grown layer to improve the crystal quality and the morphology of conventionally grown CdTe on GaAs. Improvement in the crystal quality was also observed when ALE CdTe nucleation was carried out on Si pretreated with DETe at 420°C. Atomic layer epitaxy grown ZnTe was used to obtain (100) oriented CdTe on (100) silicon.  相似文献   

19.
Three-dimensional micrometer-sized GaAs islands, with pyramidal shapes, have been grown by metal organic vapour phase epitaxy on (111)B InAs. The local strain profile in a single isolated pyramid is deduced from spatially resolved Raman and photoluminescence measurements. High residual tensile strains are found in the GaAs layer surrounding the pyramid. The strain in the pyramid is progressively relaxed from the bottom to the top (nearly strain-free). Furthermore, the Raman selection rules are correlated to the [111] substrate orientation and the high index pyramid facets.  相似文献   

20.
CdTe是GaAs衬底上分子束外延(MBE)HgCdTe薄膜时的缓冲层,引入缓冲层的目的是减小失配位错,CdTe缓冲层的生长直接影响到后续HgCdTe薄膜的制备质量,然而目前现有文献鲜有报道CdTe缓冲层的最佳厚度.采用X射线双晶衍射、位错腐蚀坑密度(EPD)、FT-IR和椭圆偏振光谱的方法,从CdTe缓冲层厚度对位错密度的影响入手,分析并确定了理想的CdTe缓冲层厚度.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号