首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 19 毫秒
1.
The electronic properties of armchair graphene oxide nanoribbons (AGONRs) with different doped oxygen configurations are studied based on density functional theory using first principle calculations. The electronic properties of the AGONRs are tuned by different oxygen configurations for top edges, center, bottom edges and fifth width. The AGONRs for top-edge O doping configuration are indirect band gap semiconductors with an energy gap of 1.268 eV involving hybridization among C-2p and O-2s, 2p electrons and electrical conductivity of oxygen atoms. The center and bottom edges are direct band gap semiconductors with 1.317 eV and 1.151 eV, respectively. The valence band is contributed from C-2p, O-2p and H-1s for top-edge O doping. The electronic properties of AGONRs are changed due to localization in ?2.94 eV of O-2p states. The center O-doped AGONRs are n-type semiconductors with Fermi levels near the conduction band bottom. This is due to hybridization among C-2s, 2p and O-2p electrons. However, bottom-edge O-doped AGONRs are p-type semiconductors, due to the electrical conductivity of oxygen atoms. The fifth-width O-doped AGONRs are indirect band gap semiconductors with an energy gap of 0.375 eV. The projected density of states shows that the localization and hybridization between C-2 s, 2p, O-2p and H-1s electronic states are rising in the conduction band and valence band from the projected density of states. The localization is induced by O-2p electronic states at a Fermi level.  相似文献   

2.
The levels of vanadium in the band gap of n-and p-Si were determined using photocapacitance measurements. It is shown that vanadium introduces levels only in the upper half of the band gap of n-Si; these levels have ionization energies of about E c ?0.21 eV, E c ?0.32 eV, and E c ?0.52 eV. By contrast, V levels are located both in the upper and lower halves of the p-Si band gap: E c ?0.26 eV, E v +0.52 eV, E v +0.42 eV, and E v +0.31 eV. It is ascertained that the photoionization cross sections of all vanadium levels are larger for electrons than for holes. It is shown that the concentration of electrically active vanadium centers in n-and p-Si depends on both the concentration of shallow-level impurities and the time of vanadium diffusion into Si.  相似文献   

3.
The influence of silicon impurity on the energy-band spectrum in the Hg3In2Te6 semiconductor compound, which incorporated a high concentration of stoichiometric vacancies, was studied on the basis of the results of electrical and optical measurements. It is shown that silicon impurity forms an impurity band of donor states whose density can be approximated by a Gaussian distribution with a peak at Ec-0.29 eV. The emergence of the impurity band is accompanied with the formation of a quasi-continuous spectrum of localized states in the band gap (Eg=0.74 eV); the density of these states is shown to increase as the doping level increases. All states merge into a continuous band if the impurity concentration NSi>4.5×1017 cm?3. Experimental data are explained on the basis of the effect of impurity self-compensation, in which case donor impurity states arise simultaneously with acceptor states of defects.  相似文献   

4.
Based on the analysis of the secondary processes of radiation-induced defect formation in Si crystals with charge-dependent selective traps for vacancies and interstitial atoms, the energy levels of vacancies and interstitial atoms were identified; these level were determined previously from the effect of the irradiation conditions on the annihilation rate of elementary primary defects. It is ascertained that the levels at ~E c -0.28 eV and at ~E c -0.65 eV in the band gap of Si belong, most likely, to vacancies; the levels at ~E c -0.44 eV, at ~E c -0.86 eV, and, presumably, at ~E c -0.67 eV belong to intrinsic interstitial atoms.  相似文献   

5.
The effect of irradiation with carbon ions on the nanocluster structure of diamond-like carbon films was studied. It is shown that the electronic properties (optical absorption and electrical conductivity at low temperatures) of the films depend heavily on the ion dose, which is a consequence of the quantum confinement effect. Variations in the optical band gap and in the activation energy for hopping conductivity are indicative of an increase in the size of π clusters whose concentration remains unchanged in the entire range of ion doses of 3×1014–1.2×1017 cm?2. The process of defect production in the clusters is shifted to higher ion doses compared to that in structurally homogeneous materials. The optical absorption in the π clusters, their concentration in the samples, the tunneling parameters for initial and completely “graphitized” films, and the width of the barrier layer between the clusters were estimated; the width of the band of defect states was determined. It is shown that the known dependence of the optical band gap of the π clusters on their size should be modified for large clusters (E g ≤1 eV).  相似文献   

6.
The doping level dependence of thermoelectric properties of delafossite CuAlO2 has been investigated in the constant scattering time (τ) approximation, starting from the first principles of electronic structure. In particular, the lattice parameters and the energy band structure were calculated using the total energy plane-wave pseudopotential method. It was found that the lattice parameters of CuAlO2 are a = 2.802 Å and c = 16.704 Å, and the internal parameter is u = 0.1097. CuAlO2 has an indirect band gap of 2.17 eV and a direct gap of 3.31 eV. The calculated energy band structures were then used to calculate the electrical transport coefficients of CuAlO2. By considering the effects of doping level and temperature, it was found that the Seebeck coefficient S(T) increases with increasing acceptor doping (A d) level. The values of S(T) in our experiments correspond to an A d level at 0.262 eV, which is identified as the Fermi level of CuAlO2. Based on our experimental Seebeck coefficient and the electrical conductivity, the constant relaxation time is estimated to be 1 × 10?16 s. The power factor is large for a low A d level and increases with temperature. It is suggested that delafossite CuAlO2 can be considered as a promising thermoelectric oxide material at high doping and high temperature.  相似文献   

7.
The complex dielectric function of PbS thin films is studied by spectroscopic ellipsometry in the spectral range from 0.74 to 6.45 eV at a temperature of 293 K. The critical energies are determined to be E 1 = 3.53 eV and E 2 = 4.57 eV. For both energy regions, the best fit is attained at the critical point 2D (m = 0). In addition, the Raman spectra and the optical-absorption spectra of PbS thin films are studied. From the dependence of the quantity (αhν)2 on the photon energy hν, the band gap is established at E g = 0.37 eV.  相似文献   

8.
The results of investigations of electrical, optical, and photoelectric properties of CdIn2Te4 crystals, which were grown by the Bridgman method are presented. It is shown that electrical conductivity is determined mainly by electrons with the effective mass mn = 0.44m0 and the mobility 120–140 cm2/(V s), which weakly depends on temperature. CdIn2Te4 behaves as a partially compensated semiconductor with the donor-center ionization energy Ed = 0.38 eV and the compensation level K = Na/Nd = 0.36. The absorption-coefficient spectra at the energy < Eg = 1.27 eV are subject to the Urbach rule with a typical energy of 18–25 meV. The photoconductivity depends on the sample thickness. The diffusion length, the charge-carrier lifetime, and the surface-recombination rate are determined from the photoconductivity spectra.  相似文献   

9.
The structural, optical, electrical and electrical–optical properties of a double-junction GaAsP light-emitting diode (LED) structure grown on a GaP (100) substrate by using a molecular beam epitaxy technique were investigated. The pn junction layers of GaAs1?xPx and GaAs1?yPy, which form the double-junction LED structure, were grown with two different P/As ratios. High-resolution x-ray diffraction (HRXRD), photoluminescence (PL), and current–voltage (IV) measurements were used to investigate the structural, optical and electrical properties of the sample. Alloy composition values (x, y) and some crystal structure parameters were determined using HRXRD measurements. The phosphorus compositions of the first and second junctions were found to be 63.120% and 82.040%, respectively. Using PL emission peak positions at room temperature, the band gap energies (Eg) of the first and second junctions were found to be 1.867 eV and 2.098 eV, respectively. In addition, the alloy compositions were calculated by Vegard’s law using PL measurements. The turn-on voltage (Von) and series resistance (Rs) of the device were obtained from the IV measurements to be 4.548 V and 119 Ω, respectively. It was observed that the LED device emitted in the red (664.020 nm) and yellow (591.325 nm) color regions.  相似文献   

10.
The effect of bombardment with heavy Xe ions (energy Ei=80 keV) on the optical properties, low-temperature conductivity, and nanostructure of diamond-like carbon (DLC) films is studied. A number of specific features have been ascertained in the behavior of graphite-like nanoclusters which are not observed upon bombardment of the films with light ions. At low irradiation doses (D<6×1013 cm?2), the concentration and size of nanoclusters decrease. At relatively high bombardment doses (D>1.2×1015 cm?2) the effective optical gap, found from the Tauc plot, becomes negative, which is due to the high density of electronic defect states within the gap. In this range, the temperature dependence of conductivity changes, although the conduction mechanism itself remains of the hopping type. The width of the band of defect states, which is formed upon irradiation and in which charge transport occurs, is 0.07 eV, which is close to a value obtained previously by the authors.  相似文献   

11.
The characteristics of the optical absorption of copper-activated zinc-sulfide polycrystalline layers after preliminary heat treatment are investigated. The composition of the compound under study was monitored by X-ray fluorescence analysis. The band gap Eg and characteristic Urbach energy are estimated from the fundamental absorption edge. The contribution of structural defects and the impurity factor to the variation in the optical properties is discussed.  相似文献   

12.
For the first time, full sets of fundamental optical functions have been obtained for zinc oxide in the range 0–30 eV at 100 K for Ec and Ec polarizations. Spectra of the transverse and longitudinal components of transitions and their basic parameters (peak energies E i , half-widths H i of transition bands, band areas S i , and oscillator strengths f i ) have also been determined for the first time. The calculations are performed using synchrotron experimental reflectance spectra. The main features of spectra of the optical functions and components of transitions are established. These features are compared to the results of known theoretical calculations of the bands and spectra of optical functions.  相似文献   

13.
The optical and thermal properties of crystals of CuAlxIn1?xTe2 solid solutions grown by the Bridgman-Stockbarger method were studied for the first time. From the transmission and reflection spectra in the region of the intrinsic-absorption edge, the band gap (E g ) was determined for the CuInTe2 and CuAlTe2 compounds and for their solid solutions; the concentration dependence of E g was plotted. The E g value was found to vary nonlinearly with x and can be described by the quadratic dependence. Dilatometry was used to study the thermal expansion of these solid solutions. The coefficient of thermal expansion (αL) was shown to have a λ-shaped temperature dependence in the region of phase transitions. The isotherms are plotted for the concentration dependence of αL. The thermal conductivity was investigated and its concentration dependence was plotted. The dependence of the thermal conductivity on x was established to have a minimum in the region of medium compositions.  相似文献   

14.
A model is developed to analyze numerically the electrical properties and the steady-state (limiting) position of the Fermi level (F lim) in tetrahedral semiconductors irradiated with high-energy particles. It is shown that an irradiated semiconductor represents a highly compensated material, in which F lim is identical to 〈E G〉/2, where 〈E G〉 is the average energy gap between the conduction band and valence band within the entire Brillouin zone of the crystal. The experimental values of F lim, the calculated values of 〈E G〉/2, and the data on the electrical properties of irradiated semiconductors are presented. The chemical trends controlling the variation in the quantity F lim in groups of semiconductors with the similar types of chemical bonding are analyzed.  相似文献   

15.
The electrical properties of p-ZnSiAs2 irradiated with protons (energy E = 5 MeV, dose D ≤ 2 × 1017 cm?2) are studied. Experimental data and results of calculations are used to estimate the limiting position of the Fermi level in the band gap of the irradiated material (at the midgap E g/2). The thermal stability of radiation defects in the temperature range from 20 to 610°C was analyzed.  相似文献   

16.
Glass with compositions xK2O-(30 ? x)Li2O-10WO3-60B2O3 for 0 ≤ x ≤ 30 mol.% have been prepared using the normal melt quenching technique. The optical reflection and absorption spectra were recorded at room temperature in the wavelength range 300–800 nm. From the absorption edge studies, the values of the optical band gap (E opt) and Urbach energy (ΔE) have been evaluated. The values of E opt and ΔE vary non-linearly with composition parameter, showing the mixed alkali effect. The dispersion of the refractive index is discussed in terms of the single oscillator Wemple Di-Domenico model.  相似文献   

17.
Deep-level transient spectroscopy is used to study the formation of complexes that consist of a radiation defect and a residual impurity atom in silicon. It is established that heat treatment of the diffused Si p+-n junctions irradiated with fast electrons lead to the activation of a residual Fe impurity and the formation of the FeVO (E0.36 trap) and FeV2 (H0.18 trap) complexes. The formation of these traps is accompanied by the early (100–175°C) stage of annealing of the main vacancy-related radiation defects: the A centers (VO) and divacancies (V2). The observed complexes are electrically active and introduce new electron (E0.36: E t e =E c -0.365 eV, σ n =6.8×10?15 cm2) and hole (H0.18: E t h =E v +0.184 eV, σ p =3.0×10?15 cm2) levels into the silicon band gap and have a high thermal stability. It is believed that the complex FeVO corresponds to the previously observed and unidentified defects that have an ionization energy of E t e =E c ?(0.34–0.37) eV and appear as a result of heat treatment of irradiated diffused Si p+-n junctions.  相似文献   

18.
The fine structure of the long-wavelength edge of the polarization spectra of exciton-phonon absorption in moderate-purity n-type 6H-SiC crystals with a concentration of uncompensated donors ND?NA=(1.7–2.0)×1016 cm?3 at T=1.7 K was studied. The analysis of new special features found at the absorption edge and the reliable detection of the onset of exciton-phonon steps related to the emission of phonons from acoustical and optical branches allowed highly accurate determination of a number of important parameters such as the band gap, the exciton band gap, the exciton binding energy, and the energies of spin-orbit and crystal-field splitting of an exciton. For the first time, transitions with the emission of LA phonons to the 1S exciton state with an M1-type dispersion law were detected in EZ(C) polarization (the electric-field vector is parallel to the optical axis of the crystal). This observation supports the previously predicted “two-well” structure of the conduction band minimum in 6H-SiC.  相似文献   

19.
Dependences of differential capacitance of the electrolyte-n-InN (0001) contact on the bias voltage are studied. Their analysis of the basis of a model similar to a model of the MIS structure shows that the energy spectrum of surface states of InN above the conduction band bottom can be represented by two, relatively narrow, bands of deep levels described by the Gaussian distribution. Parameters of these bands are as follows: the average energy counted from the conduction band bottom, ΔE 1 ≈ 0.15 eV and ΔE 2 ≈ 0.9 eV; and the mean-square deviation, ΔE 1 ≈ 0.15–0.25 eV and ΔE 2 ≈ 0.05–0.1 eV. The total density of states in the bands are (1–2.5) × 1012 and (0.2–4) × 1012 cm–2.  相似文献   

20.
The results of studying the electrical properties and isochronous annealing of p-ZnSnAs2 irradiated with H+ ions (energy E = 5 MeV, dose D = 2 × 1016 cm?2) are reported. The limiting electrical characteristics of irradiated material (the Hall coefficient R H (D)lim ≈ ?4 × 103 cm3 C?1, conductivity σ (D)lim ≈ 2.9 × 10?2 Ω?1 cm?1, and the Fermi level position F lim ≈ 0.58 eV above the valence-band top at 300 K) are determined. The energy position of the “neutral” point for the ZnSnAs2 compound is calculated.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号