首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 109 毫秒
1.
对双包层掺铒光纤激光器进行理论上的数值模拟和实验研究.根据数值模拟计算,选择2.5m双包层掺铒光纤,利用包层抽运技术,采用大功率半导体激光器作为抽运源,在入纤抽运功率为4.5W时,获得功率670mW的1.56μm激光输出.  相似文献   

2.
1180nm激光抽运Tm,Ho石英光纤激光器理论研究   总被引:7,自引:2,他引:5       下载免费PDF全文
建立了1200nm带激光抽运下Tm3+,Ho3+共掺石英光纤激光器的理论模型,用数值模拟的方法从理论上对该激光器的性能进行了研究,与实验结果进行了对比分析,以寻求对该激光器性能进行优化的空间。结果表明,在最大入纤抽运功率(3.1W)下,不管是仅Tm3+在3H4,3H6能级之间产生辐射(光纤长度为1m)还是Tm3+,Ho3+之间发生能量转移(光纤长度为3m)时,理论分析所分别获得的1.14W和733mW的输出功率,与930mW和650mW的实验结果比较一致,特别是发生能量转移时。  相似文献   

3.
为了获得窄线宽、高功率、长波长(相对于1030nm~1080nm)的1120nm光纤激光器,采用普通单模掺镱光纤和一对光纤布喇格光栅构建了该光纤激光器的谐振腔,为保证抽运光的完全吸收和避免非线性效应,对有源光纤的最佳长度进行了理论分析和实验验证。结果表明,激光器的阈值抽运功率为40mW、注入抽运功率为265mW时,激光器输出信号光功率35mW,光光转换效率为13.2%,激光器中心波长为1120.9nm,输出激光的谱线宽度为0.03nm。这种激光器的获得是因为采用了高反射率耦合输出光纤布喇格光栅、短谐振腔结构和低功率运转状态。该激光器可作为种子光注入光纤放大器。  相似文献   

4.
采用高功率975 nm多模半导体激光器(LD)作为抽运源,以大模场掺Yb3+双包层光纤(YDCF)作为激光增益介质,运用能够承受较高功率运行的利特罗(Littrow)光栅外腔调谐结构,实现了宽带可调谐激光输出.实验中,双包层光纤采用最优光纤长度14 m,光栅经仔细调整后有效入纤反馈效率约20%,当入纤抽运功率约1.3 W时,激光器达到阈值并开始振荡.通过连续旋转光栅,激光输出波长能在1046~1121 nm之间实现可调谐,可调范围达75 nm.当入纤抽运功率为48 W时,在1089 nm波长处获得最大输出功率23.7 W,相应斜率效率为53%.最后,基于数值模拟简单地分析了激光输出特性,实验结果与数值模拟结果基本保持一致.  相似文献   

5.
2μm全光纤结构铥钬共掺光纤激光器   总被引:1,自引:1,他引:0       下载免费PDF全文
陈立  鲁平  张亮  田铭  赵水  刘德明 《激光技术》2013,37(2):195-197
为了实现高效、全光纤化的2μm激光输出,采用中心波长为1569nm附近的级联双包层铒镱共掺光纤放大器来抽运铥钬共掺单模光纤、1550nm/2000nm波分复用器、光纤耦合器构成的环形腔全光纤激光器。当915nm LD抽运驱动电流为6.9A时,获得的最大输出激光功率为57.23mW,斜率效率约为12%,线宽约为4.5nm,阈值抽运功率约为180mW。结果表明,该光纤激光器性能可靠,其在光纤传感、激光医疗等领域将有巨大应用前景。  相似文献   

6.
报道了一种简单结构的超宽带ASE光纤光源,采用两个相同的980 nm半导体激光器对同一段掺铒光纤进行抽运,通过选择合适的掺铒光纤长度及调节两个抽运源的抽运功率,获得了带宽大于80 nm、输出功率21 mW的C L波段的ASE荧光输出。  相似文献   

7.
超宽带ASE光纤光源研究   总被引:1,自引:0,他引:1  
报道了一种简单结构的超宽带ASE光纤光源,采用两个相同的980nm半导体激光器对同一段掺铒光纤进行抽运,通过选择合适的掺铒光纤长度及调节两个抽运源的抽运功率,获得了带宽大于80nm、输出功率21mW的C L波段的ASE荧光输出。  相似文献   

8.
高功率窄线宽全光纤结构掺铥连续光纤激光器   总被引:3,自引:0,他引:3  
刘江  王璞 《中国激光》2013,40(1):102001-35
报道了高功率、窄线宽、全光纤结构的2μm波段掺铥连续光纤激光器。该掺铥连续光纤激光器采用了主振荡功率放大(MOPA)结构设计,通过采用790nm的多模半导体激光器抽运双包层单模掺铥光纤,获得了稳定的中心波长为1963nm的窄线宽、连续激光输出,最大输出功率为20mW。利用该低功率连续激光作为种子源经过两级掺铥光纤放大器后,平均输出功率达到了22W,相应的斜率效率为44%,激光中心波长为1963nm,3dB光谱线宽仅为0.24nm。  相似文献   

9.
以355nm激光器抽运源抽运合作拉制的国产双包层掺铒光纤(DC-EDF),获得了可见光及近红外波段的荧光输出。经实验测定,对于长约8m的DC-EDF,在429mW入纤功率抽运下,可见光区的荧光波长约从375nm延续到800nm。荧光峰分别位于397.24、415.06、456.30、497.35、549.49、678.26nm。近红外波段的荧光谱约从1429.25nm延续到1667.75nm,激发峰处于1551.76nm。近红外波段荧光峰的位置和谱宽依赖于光纤长度,荧光谱宽经测定也随抽运功率的增加而加宽。实验结果证明355nm激光可以作为掺铒光纤的一种抽运源,为传统掺铒光纤光源提供了一种新的抽运选择,也为新波段光源的开发提供了实验基础。  相似文献   

10.
张春林  赵岭  李丽娜  张亮  王立军 《半导体光电》2004,25(6):437-439,444
理论分析了线型腔双包层光纤激光器的输出特性,包括光纤长度、光纤损耗及后腔镜反射率对激光输出功率和阈值泵浦功率的影响.设计了基于光纤光栅谐振腔的双包层光纤激光器,采用锥度光纤实现了泵浦模块与双包层光纤之间的低损耗连接,实现了全光纤化的掺Yb3 双包层光纤激光器,其阈值泵浦功率为300 mW,在泵浦入纤功率为17 W时达到了10.5 W的最大激光输出功率,斜率效率为62%.  相似文献   

11.
全光纤型Er/Yb共掺光纤短腔激光器   总被引:9,自引:4,他引:5  
报道了一种高输出功率、高斜率效率的短腔ErYb共掺杂光纤激光器。激光谐振腔由一段ErYb共掺杂单模光纤与一对布拉格反射波长相同的光纤布拉格光栅(FBG)组成。反射率为60%的光纤光栅用作光纤激光器谐振腔的输出,3dB带宽为016nm。反射率为99%的光纤光栅作为高宽带反射腔镜,同时作为抽运光输入端,3dB带宽102nm。以980nm激光二极管(LD)作抽运源进行实验。使用不同的抽运功率分别测量不同长度的ErYb共掺杂光纤,优化光纤激光器谐振腔得到的最佳长度仅为13cm。即选用13cmErYb共掺杂光纤作为增益介质来制作短腔ErYb光纤光栅激光器,最大输出功率可达11mW,输出功率稳定性<±001dB,抽运阈值功率为35mW,斜率效率为153%,测量其15522nm激光的输出光谱,25dB线宽为03nm,边模抑制比>60dB,波长稳定性为005nm。可用于密集波分复用(DWDM)系统。  相似文献   

12.
基于光纤光栅法布里-珀罗腔的高效窄线宽光纤激光器   总被引:12,自引:0,他引:12  
报道了采用双光纤光栅(FBG)法布里-珀罗(F-P)腔选模的线形腔结构窄线宽光纤激光器。激光器以高掺杂Er~(3 )光纤为增益介质,利用全光纤型法拉第旋转器(FR)抑制空间烧孔效应,通过两个短光纤光栅法布里-珀罗腔选模,产生了稳定的1534.83 nm单频激光输出。激光器采用两支976 nm单模激光二极管(LD)抽运,两端输出。激光器阈值抽运光功率为12 mW,在总抽运光功率为145 mW时总输出信号光功率为39.5 mW,单端最高输出信号光功率为22 mW。光-光转换效率为27%,斜率效率为29.7%。随着抽运功率的增加,激光器输出功率趋于饱和。采用延迟自外差方法精确测量光纤激光器线宽,实验中使用了15 km单模光纤延迟线,由于测量精度的限制,得到激光器的线宽小于7kHz。这种光纤激光器具有输出功率高、线宽窄、信噪比高的特点,可用于高精度的光纤传感系统。  相似文献   

13.
光纤光栅主动稳频的短直线腔单频光纤激光器   总被引:1,自引:0,他引:1  
利用1.8cm长的Er3+/Yb3+共掺磷酸盐玻璃光纤作为增益介质制作了一个可调谐的短直线腔窄线宽单偏振单纵模光纤激光器。其谐振腔反射镜由高反射率的光纤布拉格光栅(FBG)和低反射率的保偏光纤FBG构成,使用976nm单模半导体激光器作为抽运源。当进入谐振腔的抽运功率为360mW时获得了输出功率65mW,信噪比大于70dB,线宽约为3kHz,偏振消光比达到40dB的激光输出。另外,通过使用压电陶瓷(PZT)调节增益光纤的长度实现了激光波长的电调谐,其调谐斜率约为14.2 MHz/V。采用边频锁定的方式进行主动稳频,使得激光输出的长期频率波动从25MHz/10s减少到了2.5MHz/h,从而实现了全光纤结构的高功率、高频率稳定性的单频光纤激光器。  相似文献   

14.
一种高性能环形可调谐光纤光栅激光器研究   总被引:1,自引:0,他引:1  
研制了一种新型的高性能环形可调谐光纤光栅激光器。该激光器使用980nm LD作为泵浦源,使用长度为10. 8m的新型增益平坦掺铒光纤作为增益介质,采用可调谐光纤光栅滤波器进行波长调谐,调谐范围可达41nm (1528nm~1569nm) ,中心波长可精确调谐到C波段指定的ITU - T标准中心波长处, 3dB 带宽< 0. 08nm, 25dB带宽< 0. 2nm,波长稳定性优于0. 01nm,边模抑制比> 60dB。最大输出功率46. 94mW,功率稳定性优于±0. 02dB,阈值泵浦功率7. 3mW,斜率效率为39. 75%。并分析了不同腔长、不同输出耦合比对输出功率的影响。  相似文献   

15.
本文利用国产半导体激光器泵浦掺Yb3+光纤环形激光器获得成功.掺Yb3+光纤长3 m,与1053 nm/980 nm波分复用器(WDM)构成交叉耦合型全光纤环形腔.总腔长为4 m,泵浦波长980 nm,激光波长为1042.3 nm,斜率效率9.6%,激光阈值低于0.5 mW,利用可调谐钛宝石激光器泵浦,得到该光纤激光器的最佳泵浦波长为978 nm.  相似文献   

16.
掺Yb相移分布反馈光纤激光器的后期制作与研究   总被引:3,自引:3,他引:0  
采用二次曝光法先在一根10cm长的掺Yb光纤上制作出近似λ/4相移分布反馈(DFB)掺Yb光纤激光器。再利用紫外修整的方法,同时通过F-P扫描干涉仪及示波器实时监控激光运行模式,获得了阈值低而单纵模运行特性好的λ/4相移DFB掺Yb光纤激光器。所制作的激光器阈值为20mW。当抽运功率为130mW时,获得了25mW的1053um单纵模激光。  相似文献   

17.
周雪芳  刘亚庆  胡孔文  倪勇 《半导体光电》2015,36(4):538-541,546
布里渊掺铒光纤激光器(BEFL)是一种利用非线性效应——布里渊散射来实现多波长输出的激光器,波长间隔大约为0.088 nm(11 GHz).研究了一种多波长布里渊掺铒光纤激光器线形结构,通过引入反馈实现多波长输出.在布里渊泵浦功率为11 mW,980 nm泵浦功率为12 mW时获得了波长间隔为0.08 nm的34个波长的激光输出以及1 525~1 570 nm可调谐范围.并通过调节980 nm抽运光功率以及布里渊泵浦光波长,实现了可调谐的多波长输出.还研究了980 nm抽运光功率对产生的斯托克斯光波数的影响.  相似文献   

18.
一种可调谐的多波长布里渊掺铒光纤激光器   总被引:6,自引:1,他引:5  
提出了一种可调谐多波长布里渊掺铒光纤激光器结构。利用由光环行器构成的光纤环形镜和环形腔,形成双向反馈结构,可以有效降低布里渊阈值。该激光器实现了在1513~1578nm之间超过65nm范围可调谐的激光输出。当布里渊抽运功率为15dBm(32mW),980nm抽运功率为23dBm(200mW)时获得了波长间隔为0.08nm的11个波长的激光输出。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号