首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 93 毫秒
1.
杜鸣笛  贾雅琼  何淑珍 《红外与激光工程》2017,46(8):825003-0825003(5)
从理论上详细研究了一维亚波长金属光栅的凹槽深度对太赫兹伪表面等离子的影响。分别对一维标准亚波长金属光栅和缺陷亚波长金属光栅进行了研究。电场分布情况采用了COMSOL软件进行模拟。得到的结论是:对于一维标准亚波长金属光栅,沿金属光栅传播的表面等离子体取决于槽深度,较深的槽具有更强的束缚能力;对于具有缺陷的光栅结构,电场强度的分布特点取决于缺陷槽的深度,这归功于缺陷槽对光的反射和散射。基于这一理论研究,这两种不同的亚波长金属光栅结构能为太赫兹器件如波导、衰减器及滤波器发展提供新的途征。  相似文献   

2.
一维金属亚波长周期光栅的衍射特性   总被引:9,自引:3,他引:9  
张亮  李承芳  张飞 《中国激光》2006,33(6):05-808
利用严格耦合波理论(RCWA)计算了一维金属亚波长光栅刚好出现一级衍射透射波时的周期/波长比(临界周期点),并利用最小二乘法拟合出临界周期点随光栅基底折射率的变化关系,即y=1/x。为了验证该规律的正确性,选取不同的金属材料、占空比、金属厚度、光栅周期、入射光偏振态进行计算分析。结果表明,对于一维亚波长金属光栅,一级衍射的出现都满足临界周期点的变化规律,并且与入射光的偏振态及波长无关,从而为设计一维金属亚波长光栅提供了仅存在零级衍射的条件。  相似文献   

3.
导模共振滤光片表面镀膜对其物理特性的影响   总被引:1,自引:0,他引:1  
为了研究亚波长光栅表面上薄膜的生长特性,以及镀膜对亚波长光栅物理特性的影响,对亚波长正弦槽形光栅表面上镀的Au膜进行了实验研究和理论分析.实验发现,当光栅槽深为80 nm,Au膜为100 nm时,薄膜的生长是仿形生长,光栅的正弦槽形特征和周期都基本没有发生变化,但镀膜后,出现光栅的正弦占空比增加、槽的深度减小以及槽深的均匀性变差等现象.对引起这种现象的原因进行了分析.提出了由于光栅微结构而给薄膜生长带来的阴影效应现象,并分析了正弦占空比增加对导模共振滤光片光谱特性的影响.  相似文献   

4.
亚波长偏振光栅的研究进展   总被引:3,自引:0,他引:3  
亚波长偏振光栅(PGs)具有衍射效率高,偏振特性好,易于实现偏振、分束、增透、高反、相位延迟等多种功能的优点,且体积小、重量轻、性能稳定可靠,是一种优良的新型光学元件,有着巨大的应用前景.介绍了亚波长偏振光栅的发展概况与最新研究进展,亚波长偏振光栅的特点及衍射理论,并分别对会属亚波长偏振光栅和介质业波长偏振光栅进行了分析.  相似文献   

5.
采用模态理论研究了TE偏振与TM偏振入射光在一维亚波长光栅区域的模式特性,分析了不同传播模态的有效折射率及其差值与入射条件、光栅周期、光栅深度及光栅填充比之间的关系,使用干涉法得到了在考虑光栅凹槽深度的情况下两种模态的光栅衍射效率。应用亚波长光栅的模式特性与光栅衍射效率设计了一种偏振分束器,其特性是在利特罗入射的条件下,单色光波在0级衍射处为TM偏振,在-1级处为TE偏振。  相似文献   

6.
运用有效媒质、薄膜干涉及耦合波理论,结合数值寻优算法,采用不同形式的等效折射率来描述一维亚波长光栅的光谱特性.借助光谱误差函数及耦合波折射率,分别针对TE和TM模,对其他等效折射率在描述亚波长光栅时的有效性加以分析比对.研究结果表明:在光栅结构参数已确定的情况下,当归一化光栅周期A/λ<0.30时,TE模的二级近似折射...  相似文献   

7.
亚波长周期结构抗反射介质光栅的衍射特性   总被引:3,自引:0,他引:3  
用严格耦合波理论(RCWA)计算了当折射率取一系列离散值时的二维亚波长周期结构介质光栅出现一级衍射透射波的周期值,进而利用最小二乘法拟合出临界周期点随折射率的变化规律;利用一维单台阶和多台阶光栅在TE、TM偏振状态以及二维单台阶圆柱状光栅和二维金字塔结构多台阶光栅进行验证,发现它们同样满足临界周期点的变化规律。结果证明,对于任意面形的亚波长周期结构介质光栅的一级衍射效率都有这一规律。  相似文献   

8.
为了能够更深入地理解等腰三角形亚波长光栅,采用严格耦合波法对其进行了理论分析和研究,得到了等腰三角形亚波长光栅数值模拟结果。分析了光栅周期、光入射角对等腰三角形亚波长光栅特性的影响,并从内在磁场分布角度解释了等腰三角形亚波长光栅所表现出的高反射特性。结果表明,不同光栅厚度的等腰三角形亚波长光栅会表现出不同的特性,当光栅厚度在0.54μm~0.57μm之间,等腰三角形亚波长光栅具有宽反射的反射带宽,而当光栅厚度在0.58μm~0.66μm之间,又会表现出导模共振特性。该研究能够为将来制备高性能等腰三角形亚波长光栅提供理论指导。  相似文献   

9.
基于严格耦合波理论,从反射率、吸收增强因子、光生载流子几率和理想光电转换效率几个方面模拟分析了不同锥型亚波长光栅对1μm厚晶硅电池产生的影响。模拟结果得出:在相同光栅高度下,虽然小周期(P=100nm)锥形亚波长光栅的表面反射率低于大周期(P=500nm)结构的表面反射率,但是大周期锥形亚波长光栅薄膜晶硅电池的光生载流子几率和理想光电转换效率高于小周期结构的相应值,且这种区别随着光栅高度增加而增加。在AM1.5D太阳光谱下,最优化的大周期光栅使得薄膜晶硅电池光生载流子几率和理想效率增加1.4倍和1.65倍,而最优化的小周期光栅只能分别增加0.54倍和0.48倍。  相似文献   

10.
微机电系统(MEMS)垂直腔面发射激光器(VCSELs)是一种特殊光源,具有低功耗、高调制速率、宽波长调谐范围、易耦合等优点,被广泛应用于激光通信领域。为提升激光器工作性能,如扩大波长调谐范围、提高偏振对比度等,需要优化内腔亚波长光栅结构参数来改善腔内光场分布以及偏振输出模式。基于等效介质理论(EMT),并结合薄膜理论设计了针对调谐范围中心波长为850nm、GaAs材料的亚波长光栅的较优周期、占空比、脊高的取值。分析了横电(TE)、横磁(TM)光,占空比与脊高对光栅透射率的影响。另外,通过系统模拟,对比了未刻蚀光栅、光栅未优化及光栅优化后的激光器波长调谐范围,结果表明:针对特定波长调谐范围及光栅材料,通过优化光栅参数可实现光栅对TE或TM光的增透,增强半导体腔和空气隙之间光场的耦合,进而扩大激光器的波长调谐范围。  相似文献   

11.
新一代片上传感系统提出了微型化、集成化、低成本等发展需求,硅基集成波导器件适应其发展趋势,其中亚波长光栅结构因独特的模场分布特性在折射率传感领域备受青睐。文章首先对亚波长光栅波导的工作原理进行了介绍,阐述其在折射率传感领域的优势,然后按器件结构分类梳理了亚波长光栅结构折射率传感的最新研究进展,并分析和总结了不同器件结构的优缺点,最后展望了基于亚波长光栅结构的折射率传感未来的发展方向。  相似文献   

12.
论文基于严格耦合波理论(Rigorous Coupled-Wave Analysis,RCWA),并采用遗传算法进行优化,设计并制作了一种具有高衍射效率的亚波长结构Dammann 光栅。光栅的分束比为111,最小特征尺寸为0.95 m,衍射效率设计值达到95%,优于传统Dammann 光栅约15%,且均匀性设计值小于2%。论文采用电子束光刻直写技术和反应离子刻蚀技术在石英基底上制作出亚波长结构图形。实验结果表明,电子束扫描曝光可以获得纳米级的图形分辨率。对石英基底的反应离子刻蚀中,射频功率、工作气压及气体流量均对刻蚀速率和栅线的表面形貌产生不同程度的影响,论文主要针对该问题进行了讨论。同时,论文也对电子束光刻直写过程中产生的线宽误差因素进行了分析。  相似文献   

13.
A model of sub-wavelength metallic grating without host media is proposed. Under the excitation of TE polarized light, the extraordinary transmission is also found, and their transmission energy distributions corresponding to different structural parameters of this model are calculated systematically by using finite difference time domain (FDTD) method. The influence of slit width, grating thickness and grating period on the location of transmission peak is obtained. By studying these relations, it is found that Fabry-Perot-like (FPL) effect of the slit is the main physical reason of this extraordinary transmission. Varying the slit width can cause the change of reflection phase transition at both ends, and then the characteristics of FPL resonance of slit cavity are affected. The surface mode of metallic gratings has less effect on the location of transmission peak.  相似文献   

14.
亚波长周期结构光栅具有传统光栅所不具有的特殊特性。基于矢量衍射理论-耦合波分析法对矩形亚波长光栅的衍射效率进行了理论计算,针对光通信中的1 550nm波长设计了一种基于SOI衬底的亚波长偏振光栅,分析了光栅周期、光栅深度、占空比和光栅结构的变化对其偏振特性的影响。仿真结果表明,当光栅的周期为960nm,槽深为230nm,占空比为24%时,可使TM模式的透射率大于95%,TE模式的透射率小于5%,且矩形的光栅结构相对于三角形和圆形的光栅结构具有更好的偏振性能,可有效用于光开关、光隔离器、激光器、光探测器等半导体光电子器件。  相似文献   

15.
针对亚波长光栅偏振分束器无法实现垂直出射光 、集成耦合效率低的问题,本文设计了 一种具有光束偏转功能的亚波长光栅偏振分束器,可实现偏振分束且能获得垂直出射光。器 件上 层采用光栅衍射理论设计了可实现偏振分束的周期亚波长光栅,下层通过严格耦合波法与波 前相 位控制理论设计了具有光束偏转功能的非周期亚波长光栅。基于有限元软件COMSOL对设计 的器 件进行仿真分析,结果表明该器件可分开TE与TM混合偏振光且能实现光束垂直出射,两种 偏振 光的总透射率在1550nm处超过了76.5%,偏振 消光比为14.0 dB。因此通过该偏振分束器不但可 以获得垂直出射的单偏振光,而且能有效提高垂直耦合型器件的工作效率,有望应用在面向 光纤通信的集成光电器件中。  相似文献   

16.
亚波长周期结构光栅具有传统光栅所不具有的特殊特性,采用严格耦合波法设计并制作了一种柔性双层金属光栅偏振器,通过纳米压印技术在方形的PC(Polycarbonate,聚碳酸酯)上制备了周期为278 nm,深度为110 nm,占空比为0.5的亚波长光栅,通过磁控溅射技术在制作的介质光栅上沉积了70 nm的金属铝层,制作了具有双层金属结构的柔性双层金属光栅偏振器,并用光谱测试系统进行了简单的性能测试。实验结果表明,当入射光波长范围在350~800 nm时,制作的柔性双层光栅偏振器偏振特性优良,且具有非常高的透过率和消光比,分别高达48%和100000。该制作工艺只由纳米压印和金属蒸镀完成,省去了复杂的涂胶、剥离及刻蚀,因此在大批量生产偏振器方面具有很明显的优势,可普遍用于光探测器件、光电开光等半导体光电子器件的制作过程。  相似文献   

17.
为了提高倒装发光二极管(LED)光提取效率的同时实现单偏振光输出,建立了正装、倒装和集成金属亚波长光栅倒装LED 3种模型,采用RSOFT软件进行仿真对比及器件优化,并进行了理论分析和模拟验证。结果表明,倒装LED虽然可以提高光提取效率但对P-GaN层厚非常敏感,无法单偏振光输出;集成了金属亚波长光栅的倒装LED可以不受P-GaN层厚影响,实现单偏振光输出,但要输出稳定偏振光,受光栅参量和介质过渡层厚度影响非常显著;优化后的结构可以实现57.63%的光提取效率,偏振消光比达到25.8dB。该研究对制造高性能蓝光LED具有一定的指导作用。  相似文献   

18.
利用光栅侧面耦合技术多为单波长或窄带光耦合,用于光纤激光器泵浦、光波导集成等领域,而用于可见光宽带耦合的研究很少。通过在波导上集成亚波长衍射光栅结构,可以引导太阳光在波导的侧面进行出光汇集,作为一种新型的太阳能集光器结构。利用时域有限差分算法软件(FDTD)对光栅结构进行仿真,以获得最大衍射效率的光栅结构参数,并对不同入射角度下的衍射耦合效率进行了分析。结果显示,在宽波段的光谱范围内,以上光栅结构均达到较好的衍射效率,其中闪耀光栅衍射效率最大,其衍射效率可达48.8%。这种利用亚波长衍射光栅结构的小型集光器有望应用在有关太阳能能量的收集应用中,例如照明、太阳能电池等。  相似文献   

19.
本文报道一种新型的横向腔面发射激光器,基于亚波长光栅平面内的横向谐振与垂直发射。器件采用不含DBR结构的商用波导外延材料,不需要晶片键合技术。在1552.44 nm处获得了23.0 dB的边模抑制比,最高输出功率5.32 mW。此单模激射与带边模式计算相吻合。在3维的模拟中,我们观察到光栅表面的光输出。  相似文献   

20.
为了研究2维亚波长光栅的抗反射特性,分析了2维光子晶体的2维光栅结构,通过全息束光干涉的方法,在光刻胶上制作了六角结构的2维全息光子晶体结构.把具有2维全息光子晶体结构的光刻胶作为母版采用全息模压的方法,将结构复制到薄膜材料上.结果表明,这种抗反膜在红外波段具有增透作用,与理论分析相吻合.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号