首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 15 毫秒
1.
Turbo codes have received great attention due to their outstanding performance. Unfortunately, a high performance is associated with large transmission delays, prohibiting an application for speech transmission. Hence, the aim of this paper is the comparison of turbo codes employing short interleavers with convolutional codes in terms of bit error rate performance and computational effort. Additionally, a pragmatic approach of bandwidth-efficient turbo-coded modulation is considered. Analyzing the structure of the transmitter and receiver, interesting results are presented concerning the design of the mapper. Furthermore, a new very simple soft-output demodulation algorithm is derived. In order to compare turbo codes with convolutional codes under realistic conditions, both are embedded in a direct sequence (DS) code division multiple access system. Besides this comparison, a compromise between a high coding gain (low code rate) and high direct-sequence spreading is worked out, including the consideration of the turbo-coded modulation scheme. Simulation results indicate that turbo codes with small block interleavers do not outperform conventional convolutional codes. Furthermore, it is shown that for coherent demodulation, low code rates and low DS spreading is superior to high code rates and high DS spreading  相似文献   

2.
Highly parallel decoders for convolutional turbo codes have been studied by proposing two parallel decoding architectures and a design approach of parallel interleavers. To solve the memory conflict problem of extrinsic information in a parallel decoder, a block-like approach in which data is written row-by-row and read diagonal-wise is proposed for designing collision-free parallel interleavers. Furthermore, a warm-up-free parallel sliding window architecture is proposed for long turbo codes to maximize the decoding speeds of parallel decoders. The proposed architecture increases decoding speed by 6%-34% at a cost of a storage increase of 1% for an eight-parallel decoder. For short turbo codes (e.g., length of 512 bits), a warm-up-free parallel window architecture is proposed to double the speed at the cost of a hardware increase of 12%  相似文献   

3.
In this paper, the basic theory of interleavers is revisited in a semi-tutorial manner, and extended to encompass noncausal interleavers. The parameters that characterize the interleaver behavior (like delay, latency, and period) are clearly defined. The input-output interleaver code is introduced and its complexity studied. Connections among various interleaver parameters are explored. The classes of convolutional and block interleavers are considered, and their practical implementation discussed. The trellis complexity of turbo codes is tied to the complexity of the constituent interleaver. A procedure of complexity reduction by coordinate permutation is also presented, together with some examples of its application  相似文献   

4.
A double serially concatenated code with two interleavers consists of the cascade of an outer encoder, an interleaver permuting the outer codeword bits, a middle encoder, another interleaver permuting the middle codeword bits, and an inner encoder whose input words are the permuted middle codewords. The construction can be generalized to h cascaded encoders separated by h-1 interleavers, where h>3. We obtain upper bounds to the average maximum likelihood bit-error probability of double serially concatenated block and convolutional coding schemes. Then, we derive design guidelines for the outer, middle, and inner codes that maximize the interleaver gain and the asymptotic slope of the error probability curves. Finally, we propose a low-complexity iterative decoding algorithm. Comparisons with parallel concatenated convolutional codes, known as “turbo codes”, and with the proposed serially concatenated convolutional codes are also presented, showing that in some cases, the new schemes offer better performance  相似文献   

5.
Optimized turbo codes for delay constrained applications   总被引:2,自引:0,他引:2  
We present the results of the optimization applied to the design of interleavers for rate-1/n parallel concatenated convolutional codes (PCCC) tailored to specific recursive systematic convolutional (RSC) constituent codes. The emphasis is on low-latency codes associated with interleavers of block length less than or equal to 160. The error floors of the optimized codes are significantly lower than those associated with the use of random interleavers. The distance spectra of the equivalent block codes resulting from trellis termination applied to PCCC are evaluated and used to obtain asymptotic bit error rate (BER) curves for the optimized codes  相似文献   

6.
Variable-size interleaver design for parallel turbo decoder architectures   总被引:1,自引:0,他引:1  
In this paper, we propose two techniques to design good S-random interleavers, to be used in parallel and serially concatenated codes with interleavers. The interleavers designed according to these algorithms can be shortened, in order to support different block lengths in such a way that all the permutations obtained by pruning, when employed in a parallel turbo decoder, are collision-free. The first technique, suitable for short and medium interleavers, guarantees the same performance of nonparallel interleavers in terms of spreading properties, simulated frame-error probabilities, and obtainable minimum distance of the actual codes. The second algorithm, to be used for large block lengths, permits achieving high degrees of parallelism at the price of a slight degradation of the spread properties, and also to change the degree of parallelism on-the-fly. The operations of a parallel turbo decoder employing these interleavers are described, and an example of the advantages of the proposed techniques is provided in a realistic system framework.  相似文献   

7.
A serially concatenated code with interleaver consists of the cascade of an outer encoder, an interleaver permuting the outer codewords bits, and an inner encoder whose input words are the permuted outer codewords. The construction can be generalized to h cascaded encoders separated by h-1 interleavers. We obtain upper bounds to the average maximum-likelihood bit error probability of serially concatenated block and convolutional coding schemes. Then, we derive design guidelines for the outer and inner encoders that maximize the interleaver gain and the asymptotic slope of the error probability curves. Finally, we propose a new, low-complexity iterative decoding algorithm. Throughout the paper, extensive comparisons with parallel concatenated convolutional codes known as “turbo codes” are performed, showing that the new scheme can offer superior performance  相似文献   

8.
This paper is aimed at the problem of designing optimized interleavers for parallel concatenated convolutional codes (PCCC) that satisfy several requirements simultaneously: 1) designing interleavers tailored to the constituent codes of the PCCC; 2) improving the distance spectra of the resulting turbo codes which dominate their asymptotic performance; 3) constructing optimized interleavers recursively so that they are implicitly prunable; and 4) completely avoiding short permutation cycles in order to reduce the risk of having strong correlations between the extrinsic information during iterative decoding. To this end, we present two theorems that lead to a modification of a previously developed iterative interleaver growth algorithm (IGA) that can be used to design optimized variable-length interleavers, whereby at every length the optimized permutation implemented by the interleaver is a single-cycle permutation. Two more modifications of the IGA are presented to improve the performance of the optimized interleavers at a reduced complexity. The optimization is achieved via constrained minimization of a cost function closely related to the asymptotic bit-error rate or frame-error rate of the code.  相似文献   

9.
This letter first investigates the distribution of the free distance, parameter d/sub free/ for multiple parallel concatenated schemes based on random interleavers. The distribution is obtained by computer search for information weight IW=2 error events, which are the most likely events to produce d/sub free/, at least for turbo codes. The dependence upon interleaver length and code memory is also studied. The design of the S-interleaver for turbo codes is shown to depend upon a combination of IW=2 error events (which are dependent on S) and IW=2+2 "crossed" error events (which are independent of S). The limiting value of S (for which the two effects are equal) is calculated for turbo codes and a novel algorithm to increase this limit (and hence, d/sub free/) is presented. The S-random interleaver design is extended to schemes with two interleavers, for which the use of paired S-random interleavers is proposed.  相似文献   

10.
In earlier papers , we described a novel multitransmit, multireceive (MTMR) antenna system for wireless communications. This new system, turbo Bell-Labs layered space-time (T-BLAST) architecture, combines the benefits of layered space-time coding concepts and turbo principles in the multitransmit, multireceive antenna system design. In particular, the random layered space-time codes designed by using a set of block convolutional codes and random space-time interleavers and the space-time turbo-like decoding operation allow T-BLAST to realize the benefits of MTMR systems in a computationally feasible manner. The goal of this paper is to present experimental results of T-BLAST based on real-life data collected using the Bell-Labs experimental multiple antenna system with eight transmit and five and six receive antennas. The experimental results show the practical virtues of T-BLAST.  相似文献   

11.
Convolutional block codes, which are commonly used as constituent codes in turbo code configurations, accept a block of information bits as input rather than a continuous stream of bits. In this paper, we propose a technique for the calculation of the transfer function of convolutional block codes, both punctured and nonpunctured. The novelty of our approach lies in the augmentation of the conventional state diagram, which allows the enumeration of all codeword sequences of a convolutional block code. In the case of a turbo code, we can readily calculate an upper bound to its bit error rate performance if the transfer function of each constituent convolutional block code has been obtained. The bound gives an accurate estimate of the error floor of the turbo code and, consequently, our method provides a useful analytical tool for determining constituent codes or identifying puncturing patterns that improve the bit error rate performance of a turbo code, at high signal-to-noise ratios.  相似文献   

12.
A multistage recursive block interleaver (MIL) is proposed for the turbo code internal interleaver. Unlike conventional block interleavers, the MIL repeats permutations of rows and columns in a recursive manner until reaching the final interleaving length. The bit error rate (BER) and frame error rate (FER) performance with turbo coding and MIL under frequency-selective Rayleigh fading are evaluated by computer simulation for direct-sequence code-division multiple-access mobile radio. The performance of rate-1/3 turbo codes with MIL is compared with pseudorandom and S-random interleavers assuming a spreading chip rate of 4.096 Mcps and an information bit rate of 32 kbps. When the interleaving length is 3068 bits, turbo coding with MIL outperforms the pseudorandom interleaver by 0.4 dB at an average BER of 10-6 on a fading channel using the ITU-R defined Vehicular-B power-delay profile with the maximum Doppler frequency of fD = 80 Hz. The results also show that turbo coding with MIL provides superior performance to convolutional and Reed-Solomon concatenated coding; the gain over concatenated coding is as much as 0.6 dB  相似文献   

13.
Interleaver design for turbo codes   总被引:6,自引:0,他引:6  
The performance of a turbo code with short block length depends critically on the interleaver design. There are two major criteria in the design of an interleaver: the distance spectrum of the code and the correlation between the information input data and the soft output of each decoder corresponding to its parity bits. This paper describes a new interleaver design for turbo codes with short block length based on these two criteria. A deterministic interleaver suitable for turbo codes is also described. Simulation results compare the new interleaver design to different existing interleavers  相似文献   

14.
A parallel concatenated coding scheme consists of two simple constituent systematic encoders linked by an interleaver. The input bits to the first encoder are scrambled by the interleaver before entering the second encoder. The codeword of the parallel concatenated code consists of the input bits to the first encoder followed by the parity check bits of both encoders. This construction can be generalized to any number of constituent codes. Parallel concatenated schemes employing two convolutional codes as constituent codes, in connection with an iterative decoding algorithm of complexity comparable to that of the constituent codes, have been previously shown to yield remarkable coding gains close to theoretical limits. They have been named, and are known as, “turbo codes”. We propose a method to evaluate an upper bound to the bit error probability of a parallel concatenated coding scheme averaged over all interleavers of a given length. The analytical bounding technique is then used to shed some light on some crucial questions, which have been floating around in the communications community since the proposal of turbo codes  相似文献   

15.
High-speed, low latency convolutional turbo codes require a parallel decoder architecture. To maximise the gain in speed, the interleaver also should have a parallel structure. Here, a class of optimum parallel interleavers regarding the access to storage elements is presented. They combine regularity (easy implementation) with no latency in data transfer between the decoder module and intrinsic/extrinsic values memories, and show excellent BER performance  相似文献   

16.
This paper investigates the use of punctured recursive systematic convolutional codes for turbo coding in a 2-user binary adder channel (2-BAC) in the presence of additive white Gaussian noise, aiming to achieve a higher transmission sum rate with reduced decoding complexity. The encoders for the 2-BAC are assumed to be block synchronized and to employ identical puncturing patterns. Iterative decoding combining the Bahl Cocke Jelinek Raviv algorithm and a two-user punctured trellis is employed. For each user and for a fixed puncturing pattern, random interleavers of length 256 bits or 1024 bits, respectively, are simulated and corresponding curves relating bit error rate versus signal to noise ratio are presented for performance comparison purposes. Computer simulation indicates that the loss in performance of a punctured turbo code can be negligible when longer interleavers are used for both users, similarly to the single user case.  相似文献   

17.
This paper addresses the design of semi-random, prunable interleavers for parallel concatenated convolutional codes (PCCC). The proposed technique is iterative and is based on the growth of a smaller interleaver up to the desired length N. The optimization is achieved via a minimization using a cost-function strictly related to both the correlation properties of the extrinsic information and the concept of spread of an interleaver. Performance of the designed interleavers are given in terms of bit error rate (BER) and frame error rate (FER). Comparisons are given with respect to other prunable and ad-hoc interleaver design techniques already proposed in literature. The designed interleavers are prunable and have a behavior very similar to the interleavers designed with techniques which maximize the spread of the permutation.  相似文献   

18.
Permutation Polynomial Interleavers: An Algebraic-Geometric Perspective   总被引:2,自引:0,他引:2  
An interleaver is a critical component for the channel coding performance of turbo codes. Algebraic constructions are important because they admit analytical designs and simple, practical hardware implementation. The spread factor of an interleaver is a common measure for turbo coding applications. Maximum-spread interleavers are interleavers whose spread factors achieve the upper bound. An infinite sequence of quadratic PPs over integer rings that generate maximum-spread interleavers is presented. New properties of PP interleavers are investigated from an algebraic-geometric perspective resulting in a new non- linearity metric for interleavers. A new interleaver metric that is a function of both the nonlinearity metric and the spread factor is proposed. It is numerically demonstrated that the spread factor has a diminishing importance with the block length. A table of good interleavers for a variety of interleaver lengths according to the new metric is listed. Extensive computer simulation results with impressive frame error rates confirm the efficacy of the new metric. Further, when tail-biting constituent codes are used, the resulting turbo codes are quasi-cyclic.  相似文献   

19.
Following a brief historical perspective on channel coding, an introduction to space-time block codes is given. The various space-time codes considered are then concatenated with a range of channel codecs, such as convolutional and block-based turbo codes as well as conventional and turbo trellis codes. The associated estimated complexity issues and memory requirements are also considered. These discussions are followed by a performance study of various space-time and channel-coded transceivers. Our aim is first to identify a space-time code/channel code combination constituting a good engineering tradeoff in terms of its effective throughput, bit-error-rate performance, and estimated complexity. Specifically, the issue of bit-to-symbol mapping is addressed in the context of convolutional codes (CCs) and convolutional coding as well as Bose-Chaudhuri-Hocquenghem coding-based turbo codes in conjunction with an attractive unity-rate space-time code and multilevel modulation is detailed. It is concluded that over the nondispersive or narrow-band fading channels, the best performance versus complexity tradeoff is constituted by Alamouti's twin-antenna block space-time code concatenated with turbo convolutional codes. Further comparisons with space-time trellis codes result in similar conclusions  相似文献   

20.
Multilevel turbo coding with short interleavers   总被引:2,自引:0,他引:2  
The impact of the interleaver, embedded in the encoder for a parallel concatenated code, called the turbo code, is studied. The known turbo codes consist of long random interleavers, whose purpose is to reduce the value of the error coefficients. It is shown that an increased minimum Hamming distance can be obtained by using a structured interleaver. For low bit-error rates (BERs), we show that the performance of turbo codes with a structured interleaver is better than that obtained with a random interleaver. Another important advantage of the structured interleaver is the short length required, which yields a short decoding delay and reduced decoding complexity (in terms of memory). We also consider the use of turbo codes as component codes in multilevel codes. Powerful coding structures that consist of two component codes are suggested. Computer simulations are performed in order to evaluate the reduction in coding gain due to suboptimal iterative decoding. From the results of these simulations we deduce that the degradation in the performance (due to suboptimal decoding) is very small  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号