首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到20条相似文献,搜索用时 203 毫秒
1.
根据激光熔覆生物陶瓷涂层的特点,选择二维带状热源模型,研究计算了材料物理性能在不同温度下的变化曲线,并建立温度场模型。将实验制备的涂层从涂层外观、显微硬度、涂层与基体的结合强度、涂层物相等方面对比模拟结果与实验结果,从而论证模型的可靠性。根据模拟结果可得:激光功率与扫描速度均会影响熔池深度,且激光功率的影响大于扫描速度;根据模拟的变化趋势分析,选择的激光熔覆的工艺参数为功率P=1700 W,扫描速度V=165 mm/min。模拟预测了不同涂层厚度、工艺参数条件下的熔池深度。  相似文献   

2.
激光熔覆熔池表面温度场分布的检测   总被引:5,自引:1,他引:4  
雷剑波  杨洗陈  陈娟  王云山 《中国激光》2008,35(10):1605-1608
采用电荷耦合器件(CCD)高温检测技术,检测了送粉同步式和预置式两种不同工艺下Ni基合金激光熔覆熔池,得到了其在不同功率下的熔池形貌、尺寸和温度场分布.结果表明,当激光功率低于1100 W时,合金粉末熔化不均匀,熔池形貌不规则;当激光功率达到1300 W时,熔池形貌近似椭圆形分布,比较规则平滑,x,y方向尺寸分别为2.8 mm,2.7 mm,平均温度为1800 K,其形貌和尺寸趋于稳定;当激光功率继续增加时,熔池形貌基本不变,但平均温度增加,由于高温热传导熔化,熔池尺寸会有少量增加.  相似文献   

3.
为了研究激光重熔工艺参数对等离子体喷涂复合陶瓷涂层组织结构的影响,根据激光重熔的特点,采用ANSYS有限元软件的参数化设计语言,建立了TiAl合金表面激光重熔等离子体喷涂Al2O3-13%TiO2(质量分数)复合陶瓷涂层连续移动三维温度场有限元模型,对激光重熔温度场进行了分析.分析结果表明,当陶瓷涂层厚度较大时,受到陶瓷材料导热系数较低的影响,激光重熔时无法使整个陶瓷层实现完全重熔,根据重熔时作用区温度场分布,可将整个涂层分为重熔区、烧结区和残余等离子体喷涂区;在优化的工艺参数下,采用相对较低的激光重熔功率和较低的扫描速度能够获得厚度较大的重熔区和烧结区.实验结果表明,重熔后的陶瓷涂层形成了晶粒细小且致密的等轴晶重熔区、烧结区和片层状残余等离子体喷涂区,并且重熔区和烧结区厚度的计算值和实验值吻合较好.  相似文献   

4.
CO2激光熔凝中熔池冷却过程检测研究   总被引:2,自引:2,他引:0  
为了研究激光熔凝温度场的分布,采用非接触式的直接检测方法,研制了一套新型激光熔池动态检测系统,实时拍摄了激光熔凝中熔池冷却过程热辐射图像,进行了理论分析和实验验证,取得了熔池冷却时非稳态温度场分布数据。结果表明,激光熔凝熔池冷却过程分为熔化凝固和固态降温两个过程,检测得到了熔化时间、凝固时间、熔池温度场分布、熔池尺寸等信息。这一结果对于激光熔凝工艺参数的优化选择设计是有帮助的。  相似文献   

5.
鉴于铝合金的广泛应用价值及其因质软而在应用方面受到的限制,应用激光材料表面复合化方法对铝合金材料表面进行强化处理,具体为利用Nd:YAG脉冲激光采用纳米级和微米级SiC粉对铝合金表面进行复合化处理.通过对实验结果观察和分析表明,纳米级SiC粉形成激光铝合金表面复合化涂层比微米级SiC粉所形成复合化涂层组织均匀、致密、缺陷少、涂层与基材间结合状态好并显著提高了铝合金表面的显微硬度.分析原因在于微米级SiC粉在激光熔池内发生沉降,而纳米级SiC粉可在激光熔池内形成较均匀分布,这是重力作用受粉颗粒大小影响显著的结果.从而可以看出,SiC颗粒形状、大小及其在涂层中的分布状态直接影响涂层组织特征、涂层与基材间的结合状态;把形状规则、颗粒细小、在涂层中能够形成均匀分布的SiC粉作为涂层复合物有利于形成组织特征均匀、缺陷少、与基材结合状态好的复合涂层.  相似文献   

6.
鉴于铝合金的广泛应用价值及其因质软而在应用方面受到的限制 ,应用激光材料表面复合化方法对铝合金材料表面进行强化处理 ,具体为利用Nd∶YAG脉冲激光采用纳米级和微米级SiC粉对铝合金表面进行复合化处理。通过对实验结果观察和分析表明 ,纳米级SiC粉形成激光铝合金表面复合化涂层比微米级SiC粉所形成复合化涂层组织均匀、致密、缺陷少、涂层与基材间结合状态好并显著提高了铝合金表面的显微硬度。分析原因在于微米级SiC粉在激光熔池内发生沉降 ,而纳米级SiC粉可在激光熔池内形成较均匀分布 ,这是重力作用受粉颗粒大小影响显著的结果。从而可以看出 ,SiC颗粒形状、大小及其在涂层中的分布状态直接影响涂层组织特征、涂层与基材间的结合状态 ;把形状规则、颗粒细小、在涂层中能够形成均匀分布的SiC粉作为涂层复合物有利于形成组织特征均匀、缺陷少、与基材结合状态好的复合涂层。  相似文献   

7.
同轴送粉激光成形中粉末与激光的相互作用   总被引:11,自引:2,他引:11  
详细介绍了同轴送粉激光成形过程中,金属粉末与激光束相互作用时间的计算方法。在ANSYS软件平台上,建立了金属粉末穿越激光束过程中粉末温度场的计算模型。系统计算了不同颗粒大小316L不锈钢粉末与不同功率激光束相互作用后的温度。在此基础上,计算了金属粉末与激光束的能量交换及金属粉末落入激光熔池后与激光熔池的能量交换。计算结果表明,在激光束直径为3mm条件下,316L不锈钢粉末穿过功率大于1000W的激光束后,所有尺寸金属粉末均被熔化,即金属粉末以液态进入激光熔池。通过金属粉末与激光束及激光熔池的能量交换计算,可知在激光成形中,约有5%的激光能量用于加热和熔化粉末,而大约95%的激光能量用于激光熔池的形成及由于热传导造成的热量损失。  相似文献   

8.
采用一维半无限模型和双层板理想接触模型对等离子喷涂Al2 O3陶瓷涂层激光重熔的熔化层厚度进行了计算 ,并与实验结果进行了比较。激光加热速度和熔区自冷却速度达 10 5℃ /s以上 ,温度梯度达 10 5℃ /mm以上 ;双层板理想接触模型的计算结果比一维半无限模型的结果更接近实验值。涂层设计对熔化层厚度有显著影响 ,喷有单一陶瓷层的熔化厚度最大 ,粘结层和过渡层引入之后 ,熔化层厚度下降 ,且还随SiO2 的含量增加而进一步下降。在具有相同涂层设计时 ,熔化层厚度随激光能量密度的增大而增大。  相似文献   

9.
等离子喷涂Al2O3陶瓷涂层激光熔化深度的研究   总被引:4,自引:1,他引:3  
采用一维半无限模型和双层板理想接触模型对等离子喷涂Al2O3陶瓷涂层激光重熔的熔化层厚度进行了计算,并与实验结果进行了比较.激光加热速度和熔区自冷却速度达105℃/s以上,温度梯度达105℃/mm以上;双层板理想接触模型的计算结果比一维半无限模型的结果更接近实验值.涂层设计对熔化层厚度有显著影响,喷有单一陶瓷层的熔化厚度最大,粘结层和过渡层引入之后,熔化层厚度下降,且还随SiO2的含量增加而进一步下降.在具有相同涂层设计时,熔化层厚度随激光能量密度的增大而增大.  相似文献   

10.
选区激光熔化快速成型过程温度场数值模拟   总被引:2,自引:2,他引:0  
为了优化铜磷合金粉末选区激光熔化快速成型的工艺参数,采用有限元分析软件ANSYS对其温度场进行了模拟,经理论分析和实验验证,获得了其温度场分布的数据.对材料未知温度范围内的热特性参数用插值法近似获得,采用不等网格剖分方式,用热焓去处理相变潜热问题.结果表明,其温度场的等温线分布为椭圆形,用模拟遴选的工艺参数(在铺粉厚度为0.22mm时,选用激光功率为100W、扫描速度为0.25m/s和激光束半径为0.1mm)能实现选区激光熔化快速成型.这一结果对其它粉末材料的选区激光熔化快速成型也是有帮助的.  相似文献   

11.
激光毛化的温度场和熔化过程流动状态的变化,以及因辅助气体等导致的对流换热边界条件变化都会对材料表面成形质量和组织转变产生重要影响。于是建立了模拟激光毛化的三维瞬态模型,该模型考虑了热传导、对流传热及熔池表面的形貌变化等因素,采用焓法与流体体积(VOF)方法处理固液相变移动边界与自由表面的问题,利用Fluent软件和用户自定义函数(UDF)方法求解,处理了辅助气体的驱动作用及自由表面和相界面的演化,得出了脉冲激光毛化过程中各种加工参数下熔池的形状、大小以及熔池内的温度、速度分布。实际毛化加工结果与数值模拟结果基本一致。  相似文献   

12.
激光熔池三维非稳态对流传热过程的数值模拟   总被引:5,自引:0,他引:5  
曾大文  谢长生 《激光技术》2002,26(2):102-105
建立了带有移动热源的激光熔池流体流动及传热过程三维非稳态数学模型。采用自适应网格技术离散求解动量方程,计算出了不同时刻激光熔池温度分布和速度分布。结果表明,激光熔池对流传热非稳态过程是一个预热过程,随着时间的推移,熔池最高温度不断升高,熔深和熔池半径不断增大。非稳态过程按时间先后次序分为3个阶段,初始阶段(加热熔化阶段)、准稳态阶段和快速升温阶段。准稳态阶段熔池形貌、温度分布和速度分布增加幅度不大,且持续时间比另两个阶段长,说明三维准稳态模型是三维非稳态模型的较好近似。计算结果与巳有的实验结果相比大体吻合。  相似文献   

13.
激光熔池三维非稳态对流传热过程的数值模拟   总被引:5,自引:0,他引:5  
曾大文  谢长生 《激光技术》2002,26(2):102-105
建立了带有移动热源的激光熔池流体流动及传热过程三维非稳态数学模型.采用自适应网格技术离散求解动量方程,计算出了不同时刻激光熔池温度分布和速度分布.结果表明,激光熔池对流传热非稳态过程是一个预热过程,随着时间的推移,熔池最高温度不断升高,熔深和熔池半径不断增大.非稳态过程按时间先后次序分为3个阶段初始阶段(加热熔化阶段)、准稳态阶段和快速升温阶段.准稳态阶段熔池形貌、温度分布和速度分布增加幅度不大,且持续时间比另两个阶段长,说明三维准稳态模型是三维非稳态模型的较好近似.计算结果与已有的实验结果相比大体吻合.  相似文献   

14.
叶寒  朱小刚  余廷 《激光与红外》2018,48(4):425-430
根据同轴送粉激光熔覆的特点,利用有限元软件ANSYS模拟温度场的动态过程,采用生死单元法求得熔覆层形貌的三维模型,模拟中加入了熔覆粉末的温升、激光的衰减、相变潜热以及温度对材料热物理性能的影响等因素的影响作用,并且对温度场的结果进行了分析和试验验证。结果表明,熔池前方温度梯度比后方大,熔池最高温度在短时间之后会基本保持稳定。在高锰钢表面采用4000 W多模光纤激光器熔覆镍包WC复合粉末,涂层组织主要为细化树枝晶,通过对熔覆层横截面形貌、组织形貌、温度场分布的观察分析,验证了模拟结果的准确性,可作为制备涂层的工艺的理论参考。  相似文献   

15.
为了更准确地研究激光打孔相变过程,基于流体传热和流体力学理论,建立了GH4037镍基高温合金激光打孔相变模型。模型中考虑了重力、粘滞力、反冲压力的作用,以及材料的固-液相变和液-气相变过程,通过数值计算得到了激光打孔相变过程的温度场和速度场。结果表明,气化材料的反冲压力可以加快熔池的流动,在激光功率为2000W、脉宽为1.70ms时,材料最大气化蒸发速率可以达到250m/s。该模型为进一步开展激光打孔研究提供了理论基础。  相似文献   

16.
以地基激光辐照运动目标为研究背景,分析运动目标辐照参数特性对激光辐照温度场的影响。首先,在设定交互场景的基础上,求解激光辐照参数,总结运动目标激光辐照参数的特点为:平均功率密度随目标运动不断变化;辐照面域光束强度空间分布为椭圆形高斯分布;目标表面存在强制热对流。其次,利用有限容积法求解激光辐照运动目标温度场分布。最后,分析运动目标辐照参数特性对温度场分布的影响。分析结果表明:随着目标的运动,激光辐照平均功率密度不断增加,目标温升速率不断增加;激光束辐照运动目标的角度不同,辐照面域的光束强度空间分布不同,温升区域也不相同;运动目标表面存在强制热对流形式的能量交换,减缓了表面温升。  相似文献   

17.
为了研究高功率激光致碳纤维/环氧树脂复合材料的热损伤规律,采用COMSOL软件对多层结构的碳纤维/环氧树脂复合材料的热应力进行模拟计算,取得了不同功率密度激光辐照复合材料的瞬态温度场与应力场的时空分布及变化规律。测量得到不同功率密度的激光作用碳纤维/环氧树脂后的损伤面积和损伤形貌,与数值模拟结果的趋势吻合。结果表明,靶材表面辐照中心点温度在872K时出现温度平台,即相变潜热期与逆相变潜热期,并随着激光功率密度变化;激光辐照靶材对上表面碳纤维产生了极大的轴向压应力,功率密度为293W/cm2时,压应力差值约为1.87MPa;功率密度为3453W/cm2时, 压应力差值约为1.42MPa。这一结果对高功率激光致碳纤维/环氧树脂复合材料的热损伤研究提供了理论基础。  相似文献   

18.
涂层界面失效破坏临界位置的理论分析与实验研究   总被引:1,自引:0,他引:1  
冯爱新  叶勇  殷苏民  程昌  曹宇鹏 《中国激光》2008,35(11):1746-1751
根据红外激光划痕时在涂层表面产生的温度场的理论分析,找出涂层界面失效破坏的临界位置.在实验研究中,分析红外热成像仪对激光划痕涂层的实时温度检测结果,表明在涂层逐渐失效破坏的过程中,其表面的温度状况呈现出与理论分析结果相一致的两阶段的变化,进而说明了温度变化的转折点即是该涂层从基体脱落下来的临界位置;并通过计算得知,该涂层临界脱落点对应的激光辐射功率大约为31.92 W,这一结果直接反映了该涂层与基体结合强度的情况.  相似文献   

19.
温度场监控下高功率半导体激光熔敷钴基合金涂层   总被引:1,自引:1,他引:0  
采用3.5 kW半导体激光器在42CrMo4表面熔覆了钴基合金(Stellite 6)涂层,利用光学显微镜和显微硬度仪表征了涂层的微观组织和硬度分布,研究了监控熔覆过程中的熔池温度场对涂层的微观结构和显微硬度的影响.结果表明:基于熔池温度场拍摄并调整激光器输出功率的熔池大小闭环监控的工艺可实现对钴基合金涂层的稀释率以及结构与性能的调控:当送粉量为22.6 g/min、熔覆速率为1 m/min时,基于熔池温度场监控的工艺调整实现了近零稀释率的钴基合金涂层的熔覆,所需激光功率仅为1.5 kW;涂层与基体形成良好的冶金结合,组织致密,主要由平面晶、胞状晶、树枝晶和等轴晶构成,晶粒细小,显微硬度达到HV600.  相似文献   

20.
为了改善激光沉积过程中,涂层出现气孔、裂纹与基材结合不良等缺陷,采用旋转磁场辅助激光沉积的方法,在304奥氏体不锈钢制备了Fe106+镍包碳化钨(质量分数为0.05)复合涂层。借助扫描电子显微镜、X射线衍射仪、激光共聚焦扫描显微镜等表征手段进行了组织结构和物相分析,通过硬度计、摩擦磨损试验机对其耐磨性进行测定。结果表明,旋转磁场可以抑制熔池流动,促进了涂层组织细晶强化和匀质效应;磁场强度为70mT时涂层显微硬度是无磁场涂层的1.16倍;相同的磨损条件下,磁场强度为70mT的涂层比无磁场涂层失重降低了64.2%,耐磨性得到明显改善。利用磁场辅助激光沉积对改善激光沉积缺陷是有帮助的。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号