首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到18条相似文献,搜索用时 328 毫秒
1.
10Gb/s宽动态范围CMOS跨阻前置放大器   总被引:1,自引:1,他引:0       下载免费PDF全文
采用UMC 0.13μm CMOS工艺,实现了一种应用于SDH系统STM-64(10Gb/s)光接收机的前置放大器.该前置放大器采用具有低输入阻抗特点的RGC (Regulated Cascode)作为输入级.同时,采用消直流技术来扩大输入信号的动态范围.在片测试结果表明:双端输出时中频跨阻增益约为58.57 dBΩ(848 Ω),-3dB带宽为12GHz,平均等效输入噪声电流谱密度约为24.7pA/Hz1/2,1.2V单电压源下功耗为21.84mW,其中8mW来自输出缓冲.输入电压信号动态范围36.5dB(12mV~800mV).包括焊盘在内的芯片面积仅为0.462×0.566mm2  相似文献   

2.
采用0.5 μm GaAs PHEMT工艺,研制了一种PIN光探测器和分布放大器单片集成850 nm光接收机前端. 探测器光敏面直径为30 μm,电容为0.25 pF,10 V反向偏压下的暗电流小于20 nA.分布放大器-3 dB带宽接近20 GHz,跨阻增益约46 dBΩ;在50 MHz~16 GHz范围内,输入、输出电压驻波比均小于2;噪声系数在3.03~6.50 dB之间.单片集成光接收机前端在1.0和2.5 Gb/s非归零(NRZ)伪随机二进制序列(PRBS)调制的光信号下得到较为清晰的输出眼图.  相似文献   

3.
12 Gb/s GaAs PHEMT 跨阻抗前置放大器   总被引:1,自引:0,他引:1       下载免费PDF全文
采用0.5 μ m GaAs PHEMT工艺研制了一种单电源偏置光接收机跨阻抗前置放大器.放大器-3dB带宽约为9.5GHz;在50MHz~7.5GHz范围内,跨阻增益为43.5±1.5dB Ω ,输入输出回波损耗均小于-10dB;带内噪声系数在4dB~6.5dB之间,由此得到的最小等效输入噪声电流密度约为17.6pA/ Hz ;输入12Gb/s NRI伪随机序列时,放大器输出眼图清晰,眼开良好.  相似文献   

4.
采用0.5μm GaAs PHEMT工艺研制了一种单电源共栅电流模跨阻抗前置放大器(TIA).测量得到放大器-3dB带宽为7.5GHz,跨阻增益为45dBΩ;输入输出电压驻波比(VSWR)均小于2;等效输入噪声电流谱密度在14.3~22pA/ Hz之间,平均值为17.2pA/ Hz.在输入10Gb/s非归零(NRZ)伪随机二进制序列(PRBS)信号下,放大器输出眼图清晰,具有14ps的定时抖动和138mV的峰峰电压.  相似文献   

5.
采用0.5μm GaAs PHEMT工艺研制出了一种单片集成850nm光接收机前端,它包括金属-半导体-金属(MSM)光探测器和分布放大器.探测器光敏面积为50μm×50μm,电容为0.17pF,4V偏压下的暗电流小于17nA.分布放大器-3dB带宽接近20GHz,跨阻增益约46dBΩ;在50MHz~16GHz范围内,输入、输出电压驻波比均小于2;噪声系数在3.03~6.5 dB之间.光接收机前端在输入2.5和5Gb/s非归零伪随机二进制序列调制的光信号下,得到较为清晰的输出眼图.  相似文献   

6.
采用0.5μm GaAs PHEMT工艺研制出了一种单片集成850nm光接收机前端,它包括金属-半导体-金属(MSM)光探测器和分布放大器.探测器光敏面积为50μm×50μm,电容为0.17pF,4V偏压下的暗电流小于17nA.分布放大器-3dB带宽接近20GHz,跨阻增益约46dBΩ;在50MHz~16GHz范围内,输入、输出电压驻波比均小于2;噪声系数在3.03~6.5 dB之间.光接收机前端在输入2.5和5Gb/s非归零伪随机二进制序列调制的光信号下,得到较为清晰的输出眼图.  相似文献   

7.
光通信用宽动态范围10 Gb/s CMOS跨阻前置放大器   总被引:1,自引:0,他引:1  
刘全  冯军 《半导体光电》2009,30(2):264-267
采用UMC 0.13 μm CMOS工艺,设计了一种应用于SDH系统STM-64(10 Gb/s)光接收机前置放大器.该前置放大器采用具有低输入阻抗特点的RGC形式的跨阻放大器实现.同时,引入消直流电路来扩大输入信号的动态范围.后仿真结果表明:双端输出时中频跨阻增益约为57.6 dBΩ,-3 dB带宽为10.7 GHz,平均等效输入噪声电流谱密度为18.76 pA/sqrt(Hz),1.2V单电压源下功耗为21 mW,输入信号动态范围40 dB(10 μA~1 mA).芯片面积为0.462 mm×0.566 mm.  相似文献   

8.
基于90 nm栅长的InP高电子迁移率晶体管(HEMT)工艺,研制了一款工作于130 ~140 GHz的MMIC低噪声放大器(LNA).该款放大器采用三级级联的双电源拓扑结构,第一级电路在确保较低的输入回波损耗的同时优化了放大器的噪声,后两级则采用最大增益的匹配方式,保证了放大器具有良好的增益平坦度和较小的输出回波损耗.在片测试结果表明,在栅、漏极偏置电压分别为-0.25 V和3V的工作条件下,该放大器在130~ 140 GHz工作频带内噪声系数小于6.5 dB,增益为18 dB±1.5 dB,输入电压驻波比小于2:1,输出电压驻波比小于3:1.芯片面积为1.70 mm×1.10 mm.该低噪声放大器有望应用于D波段的收发系统中.  相似文献   

9.
基于砷化镓(GaAs)赝晶型高电子迁移率晶体管(PHEMT)工艺,研制了一款25~45 GHz宽带单片微波集成电路(MMIC)低噪声放大器。该放大器采用三级级联的双电源结构,前两级在确保良好的输入回波损耗的同时优化了放大器的噪声;末级采用最大增益的匹配方式,保证了良好的增益平坦度、输出端口回波损耗以及输出功率。此外还对源电感和宽带匹配都进行了优化,实现了低噪声下的宽带输出。在片测试表明,在栅、漏偏置电压分别为-0.38 V和3 V,电流为60 mA的工作条件下,该放大器在25~45 GHz频带内噪声系数小于2 dB,增益为(22±1.5) dB,输入、输出电压驻波比典型值为2:1,1 dB增益压缩输出功率(P-1 dB)典型值为10 dBm。该低噪声放大器可以用于宽带毫米波收发系统。  相似文献   

10.
基于国内的材料和工艺技术,研制出850 nm单片集成光接收机前端,集成形式包括PIN/TIA、PIN/DA、MSM/TIA和MSM/DA等.对光探测器和电路分别进行了研究和优化.通过Silvaco软件,建立了探测器器件模型,并通过实验数据验证.分布放大器-3 dB带宽接近20 GHz,跨阻增益约46 dBΩ,输入、输出驻波比均小于2,噪声系数在3.03~6.5 dB之间.跨阻前置放大器-3 dB带宽接近10 GHz,跨阻增益约43 dBΩ,输入、输出驻波比均小于3.5,噪声系数在4~6.5 dB之间.集成芯片最高工作速率达到5 Gb/s.  相似文献   

11.
徐晖  冯军  刘全  李伟 《半导体学报》2011,32(10):97-102
A 3.125-Gb/s transimpedance amplifier(TIA) for an optical communication system is realized in 0.35μm CMOS technology.The proposed TIA employs a regulated cascode configuration as the input stage, and adopts DC-cancellation techniques to stabilize the DC operating point.In addition,noise optimization is processed. The on-wafer measurement results show the transimpedance gain of 54.2 dBΩand -3 dB bandwidth of 2.31 GHz.The measured average input referred noise current spectral density is about 18.8 pA/(?).The measured eye diagram is clear and symmetrical for 2.5-Gb/s and 3.125-Gb/s PRBS.Under a single 3.3-V supply voltage,the TIA consumes only 58.08 mW,including 20 mW from the output buffer.The whole die area is 465×435μm~2.  相似文献   

12.
A switched gain controlled low noise amplifier (LNA) for the 3.1- 4.8 GHz ultra-wideband system is presented. The LNA is fabricated with the 0.18 mum 1P6M standard CMOS process. Measurement of the LNA was performed using an RF probe station. In gain mode, measured results show a noise figure of 4.68-4.97 dB, gain of 12.5-13.9 dB, and input/output return loss higher than 10/8.2 dB. The input IP3 (IIP3) at 4.1 GHz is 1 dBm, and consumes 14.6 mW of power. In bypass mode, measured results show a gain of-7.0 to -8.7 dB, and input/output return loss higher than 10/6.3 dB. The input IP3 at 4.1 GHz is 9.2 dBm, and consumes 1 muW of power.  相似文献   

13.
基于南京电子器件研究所0.5μm GaAs PHEMT工艺,研制了一种高增益级联式光接收机前置放大器.作为前级的跨阻抗放大器的-3dB带宽为10GHz,小信号增益为9dB;作为后级的分布式放大器的-3dB带宽接近20GHz,小信号增益为12dB;级联前置放大器小信号增益达21.3dB,跨阻增益为55.3dBΩ,在输入10Gb/s非归零伪随机二进制序列下,放大器输出眼图清晰、对称、信噪比优于跨阻放大器,分布放大器不能校正的输入波形失真也得到显著改善.  相似文献   

14.
This brief presents a circuit technique to compensate for the metal and substrate loss of the on-chip transmission lines (TLs), and, consequently, to improve the gain flatness and bandwidth of CMOS distributed amplifiers (DAs). An eight-stage DA suitable for 40-Gb/s optical communication is devised and implemented in a 0.13- $muhbox{m}$ CMOS process. The DA achieves a flat gain of 10 dB from dc to 44 GHz with an input and output matching better than $-$ 8 dB. The measured noise figure varies from 2.5 to 7.5 dB with the amplifier's band. The proposed DA dissipates 103 mW from two 1-V and 1.2-V dc supplies.   相似文献   

15.
A 3-6 GHz CMOS broadband low noise amplifier (LNA) for ultra-wideband (UWB) radio is presented. The LNA is fabricated with the 0.18 /spl mu/m 1P6M standard CMOS process. Measurement of the CMOS LNA is performed using an FR-4 PCB test fixture. From 3 to 6 GHz, the broadband LNA exhibits a noise figure of 4.7-6.7 dB, a gain of 13-16 dB, and an input/output return loss higher than 12/10 dB, respectively. The input P/sub 1 dB/ and input IP3 (IIP3) at 4.5 GHz are about -14 and -5 dBm, respectively. The DC supply is 1.8 V.  相似文献   

16.
We report precision measurements of the effective input noise temperature of a cryogenic (liquid-helium temperature) monolithic-microwave integrated-circuit amplifier at the amplifier reference planes within the cryostat. A method is given for characterizing and removing the effect of the transmission lines between the amplifier reference planes and the input and output connectors of the cryostat. In conjunction with careful noise measurements, this method enables us to measure amplifier noise temperatures below 5 K with an uncertainty of 0.3 K. The particular amplifier that was measured exhibits a noise temperature below 5.5 K from 1 to 11 GHz, attaining a minimum value of 2.3 K/spl plusmn/0.3 K at 7 GHz. This corresponds to a noise figure of 0.034 dB/spl plusmn/0.004 dB. The measured amplifier gain is between 33.4 dB/spl plusmn/0.3 dB and 35.8 dB/spl plusmn/0.3 dB over the 1-12-GHz range.  相似文献   

17.
A single-chip ultra-high gain distributed amplifier (DA) was developed using commercial GaAs PHEMT foundry for 40-Gb/s base band applications. Two seven-section DAs are directly coupled using a lumped dc level-shift circuit. The dc bias level of the second-stage DA can be tuned using the level-shift circuit for optimum gain. The gain of each DA stage has been optimized using a novel active feedback cascode topology, which allows the gain bandwidth product to be maximized while avoiding instability problems. The fabricated single-chip DA with a size of 2.1 mm /spl times/ 2.3 mm showed a high gain of 28 dB, and an average noise figure of 4.6 dB with a 41 GHz bandwidth. The corresponding transimpedance gain was 62 dB/spl Omega/ and the input noise current density was 14.5 pA//spl radic/Hz. The gain bandwidth product (GBWP) is 1030 GHz, which corresponds to the highest performance using GaAs technology for 40 Gb/s applications.  相似文献   

18.
利用国内先进的 0 .6μm数字 Si-MOS工艺 ,设计了射频 MOSFET,并研究了其 DC和微波特性 :I-V曲线、S参数、噪声参数和输出功率。研究发现 ,数字电路用 Si MOSFET的频率响应较高 :频率为 1 GHz时功率增益可达 1 0 d B,2 GHz时为 8d B,4GHz时为 5 d B。 1 .8GHz时 ,1分贝压缩输出功率 1 2 .8d Bm,饱和输出功率可达 1 8d Bm,且最小噪声系数为 3 .5 d B。用提取的参数设计并研制了微波 Si MOSFET低噪声放大器 ,以验证MOS器件的微波性能。此放大器由两级级联而成 ,单电源供电 ,输入输出电容隔直。在频率 1 .7~ 2 .2 GHz的范围内 ,测得放大器增益 1 5± 0 .5 d B,噪声系数 N F<3 .8d B,1分贝压缩输出功率 1 2 d Bm;在频率 1 .5~ 2 .5 GHz的范围内 ,放大器增益大于 1 3 d B。  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号