首页 | 本学科首页   官方微博 | 高级检索  
相似文献
 共查询到10条相似文献,搜索用时 107 毫秒
1.
Extrinsic lattice matched InAlAs/InGaAs/InP HEMT model, incorporating the parasitic source and drain resistance, for very high frequency application is developed. The current voltage characteristics and the transconductance have been evaluated and the influence of carrier concentration dependent mobility on frequency has also been analyzed. A cut-off frequency of 135 GHz is obtained.  相似文献   

2.
In the proposed work the model has been formulated for discretized doped HEMT, where the conventional uniformly doped, pulsed doped and delta doped structure are the special cases. An expression for sheet carrier density has been formulated considering the effect of doping-thickness product and has been extended to calculate drain current, transconductance, capacitance and cut-off frequency of the device. The model also takes into account the non-linear relationship between sheet carrier density and quasi Fermi energy level to validate it from subthreshold region to high conduction region. The results so obtained have been compared with pulsed doped structure to validate the model. The analysis concentrates on the distance of doping from the heterojunction and gate electrode. Different design criteria have been given to dope the carriers (amount and distance) in different regions to optimize the performance for higher sheet carrier density/parallel conduction voltage/effective parallel conduction voltage (Vc−Voff) to increase the transconductance, cut-off frequency and reliability of the device.  相似文献   

3.
采用二维器件仿真软件对GaN/Si异质结双极晶体管进行了特性仿真研究.对GaN/Si异质结双极晶体管建立了合理准确的物理模型,包括不完全电离模型、能带模型、能带变窄模型、迁移率模型与复合模型.结果表明,GaN/Si异质结开启电压为2.5 eV.在Ib=0.2 mA时,电流放大倍数为100倍.击穿电压为900V,使其在大功率器件方面有很大应用前景.最高截止频率为100 GHz,使其可工作在射频和微波频段.  相似文献   

4.
The DC and RF characteristics of Ga/sub 0.49/In/sub 0.51/P-In/sub 0.15/Ga/sub 0.85/As enhancement- mode pseudomorphic HEMTs (pHEMTs) are reported for the first time. The transistor has a gate length of 0.8 /spl mu/m and a gate width of 200 /spl mu/m. It is found that the device can be operated with gate voltage up to 1.6 V, which corresponds to a high drain-source current (I/sub DS/) of 340 mA/mm when the drain-source voltage (V/sub DS/) is 4.0 V. The measured maximum transconductance, current gain cut-off frequency, and maximum oscillation frequency are 255.2 mS/mm, 20.6 GHz, and 40 GHz, respectively. When this device is operated at 1.9 GHz under class-AB bias condition, a 14.7-dBm (148.6 mW/mm) saturated power with a power-added efficiency of 50% is achieved when the drain voltage is 3.5 V. The measured F/sub min/ is 0.74 dB under I/sub DS/=15 mA and V/sub DS/=2 V.  相似文献   

5.
An accurate model for the drain characteristics, transconductance, cut-off frequency and transit time of a short geometry polysilicon thin film transistor (poly-Si TFT) is presented. An accurate threshold voltage and field dependent mobility are the key parameters in determining the above-threshold characteristics. The current-voltage characteristics of the device show an excellent agreement with experimental results. The transconductance for both linear and saturation regions is calculated and its variation with channel length, drain and gate voltages is studied. The total gate capacitance including the geometric capacitance and the fringing capacitance is also evaluated and simple closed form expressions for the cut-off frequency and transit time are obtained. A high cut-off frequency is achieved, which is important in realizing the device for millimetre and microwave frequency applications.  相似文献   

6.
In this paper analytical modeling for a novel three region gate dielectric engineered AlGaN/GaN Metal Insulator Semiconductor heterostructure field effect transistor (MISHFET) device architecture is presented which shows high transconductance and enhanced cut-off frequency at quarter micron gate lengths. Using a three region analysis along the horizontal direction in the gate dielectric region the expressions for transconductance and cut-off frequency of the device are obtained. It has been observed that using these gate dielectric schemes, improvements on device performance are observed over conventional MISHFET structures. Relative comparison of T and Γ-gate shaped structures is done with uniform gate dielectric profile and enhancement in microwave performance is observed. The proposed model is capable of modeling electrical characteristics like drain current, output conductance and threshold voltage of various other existent structures like uniform gate dielectric MISHFETs, HFETs and T-gate HFETs. The present model is based on closed form expression and does not involve any fitting parameter. The results obtained are compared with experimental data and show excellent agreement, thereby proving the validity of the model.  相似文献   

7.
An analytical two-dimensional capacitance-voltage model for AlGaN/GaN high electron mobility transistor (HEMTs) is developed, which is valid from a linear to saturation region. The gate source and gate drain capacitances are calculated for 120 nm gate length including the effects of fringing field capacitances. We obtain a cut-off frequency (fT) of 120 GHz and maximum frequency of oscillations (fmax) of 160 GHz. The model is very useful for microwave circuit design and analysis. Additionally, these devices allow a high operating voltage VDS, which is demonstrated in the present analysis. These results show an excellent agreement when compared with the experimental data.  相似文献   

8.
The high frequency performance of n-channel Si/SiGe-based FETs is investigated by computer simulation. Using a two-dimensional hydrodynamic model, devices having gate lengths down to 0.1 μm are examined. Self-aligned heterojunction MOSFETs are found to offer the best performance in terms of cut-off frequency and available voltage gain. Schottky gate heterojunction FETs have the highest transconductance in this study, but simulations confirm that this is because of the close proximity of the channel to the gate. Depletion mode MOS gate devices are also considered and a large parameter space is explored  相似文献   

9.
Ga0.51In0.49P/In0.15Ga0.85 As/GaAs pseudomorphic doped-channel FETs exhibiting excellent DC and microwave characteristics were successfully fabricated. A high peak transconductance of 350 mS/mm, a high gate-drain breakdown voltage of 31 V and a high maximum current density (575 mA/mm) were achieved. These results demonstrate that high transconductance and high breakdown voltage could be attained by using In0.15Ga0.85As and Ga0.51In0.49P as the channel and insulator materials, respectively. We also measured a high-current gain cut-off frequency ft of 23.3 GHz and a high maximum oscillation frequency fmax of 50.8 GHz for a 1-μm gate length device at 300 K. RF values where higher than those of other works of InGaAs channel pseudomorphic doped-channel FETs (DCFETs), high electron mobility transistors (HEMTs), and heterostructure FETs (HFETs) with the same gate length and were mainly attributed to higher transconductance due to higher mobility, while the DC values were comparable with the other works. The above results suggested that Ga0.51In0.49P/In0.15Ga0.85 As/GaAs doped channel FET's were were very suitable for microwave high power device application  相似文献   

10.
An enhancement-mode AlGaN/GaN HEMT with a threshold voltage of 0.35 V was fabricated by fluorine plasma treatment.The enhancement-mode device demonstrates high-performance DC characteristics with a saturation current density of 667 mA/mm at a gate bias of 4 V and a peak transconductance of 201 mS/mm at a gate bias of 0.8 V.The current-gain cut-off frequency and the maximum oscillation frequency of the enhancement-mode device with a gate length of μm are 10.3 GHz and 12.5 GHz,respectively,which is comparable with the depletion-mode device.A numerical simulation supported by SIMS results was employed to give a reasonable explanation that the fluorine ions act as an acceptor trap center in the barrier layer.  相似文献   

设为首页 | 免责声明 | 关于勤云 | 加入收藏

Copyright©北京勤云科技发展有限公司  京ICP备09084417号